LEADER 03056 am 2200709 n 450 001 9910324039603321 005 20190109 010 $a2-8028-0417-0 024 7 $a10.4000/books.pusl.12905 035 $a(CKB)4100000008283867 035 $a(FrMaCLE)OB-pusl-12905 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/52355 035 $a(PPN)236709976 035 $a(EXLCZ)994100000008283867 100 $a20190528j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aL?expertise /$fJean Gillardin, Pierre Jadoul 210 $aBruxelles $cPresses de l?Université Saint-Louis$d2019 215 $a1 online resource (245 p.) 311 $a2-8028-0101-5 330 $aDe longue date, les reproches essentiels formulés à propos de la procédure d'expertise judiciaire, actuellement organisée par les articles 962 à 991 du Code judiciaire, se sont focalisés autour de deux grands thèmes : - le coût excessif de ce genre de procédure ; - la durée anormalement longue de son déroulement. Le Code judiciaire a voulu remédier à ces griefs, tout en admettant la nécessité de recourir à ce mode de preuve lorsque l'enjeu du litige dépasse d'un point de vue technique les compétences de nos Cours et Tribunaux. Les trente articles du Code judiciaire relatifs à l'expertise sont cependant source de nombreuses dérives, susceptibles de se produire à tous les stades de la procédure. Il a dès lors paru indispensable de les dénoncer, mais également d'envisager les palliatifs et/ou remèdes dont les acteurs (magistrats, avocats, experts,...) disposent. La qualité et l'expérience en la matière des intervenants aux journées d'étude organisées témoignent à suffisance de l'intérêt qu'ils ont suscité. 606 $aLaw 606 $acode judiciaire 606 $acoût 606 $aexpertise 606 $ajournée d'étude 606 $adurée 606 $aprocédure 610 $adurée 610 $ajournée d'étude 610 $acoût 610 $aprocédure 610 $acode judiciaire 610 $aexpertise 615 4$aLaw 615 4$acode judiciaire 615 4$acoût 615 4$aexpertise 615 4$ajournée d'étude 615 4$adurée 615 4$aprocédure 700 $aBlock$b Guy$01283631 701 $aBours$b Jean-Pierre$0593937 701 $aClosset-Marchal$b Gilberte$01283632 701 $aFettweis$b Albert L$0228881 701 $aGillardin$b Jean$0263479 701 $aJassogne$b Christian$0278218 701 $aPanier$b Christian$01283633 701 $aPire$b Didier$01283634 701 $aRenchon$b Jean-Louis$01283635 701 $aVan Compernolle$b Jacques$01283636 701 $aGillardin$b Jean$0263479 701 $aJadoul$b Pierre$01232531 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910324039603321 996 $aL?expertise$93019168 997 $aUNINA LEADER 05892nam 2200781 450 001 9910816653103321 005 20200520144314.0 010 $a1-119-11770-4 010 $a1-119-11769-0 010 $a1-119-11771-2 035 $a(CKB)3710000000458811 035 $a(EBL)1964129 035 $a(SSID)ssj0001531222 035 $a(PQKBManifestationID)12582718 035 $a(PQKBTitleCode)TC0001531222 035 $a(PQKBWorkID)11533137 035 $a(PQKB)10851655 035 $a(PQKBManifestationID)16038859 035 $a(PQKB)24176069 035 $a(MiAaPQ)EBC4043044 035 $a(DLC) 2015027731 035 $a(MiAaPQ)EBC1964129 035 $a(Au-PeEL)EBL4043044 035 $a(CaPaEBR)ebr11088031 035 $a(CaONFJC)MIL820157 035 $a(OCoLC)913890603 035 $a(Au-PeEL)EBL1964129 035 $a(PPN)190116811 035 $a(EXLCZ)993710000000458811 100 $a20150817h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aReactions and mechanisms in thermal analysis of advanced materials /$fedited by Atul Tiwari and Baldev Raj 205 $a1st ed. 210 1$aSalem, Massachusetts ;$aHoboken, New Jersey :$cScrivener Publishing :$cJohn Wiley & Sons, Inc.,$d2015. 210 4$d©2015 215 $a1 online resource (612 pages) 225 0 $aMaterials Degradation and Failure Series 300 $aDescription based upon print version of record. 311 $a1-119-11757-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Contents; Preface; Part 1: Degradation of Polymers; 1 Thermal Stability of Organic Monolayers Covalently Grafted on Silicon Surfaces; 1.1 Introduction; 1.1.1 Hydrogen-Terminated Si Surfaces; 1.2 Alkyl-Grafted Surfaces; 1.2.1 Preparation; 1.2.2 Thermal Stability of Alkyl-Grafted Surfaces; 1.2.3 Case of Substituted Alkyl Surfaces; 1.3 Alkoxy-Grafted Surfaces; 1.3.1 Preparation; 1.3.2 Thermal Stability of Alkoxy-Grafted Surfaces; 1.4 Surfaces Grafted with Aryl Groups; 1.4.1 Preparation; 1.4.2 Thermal Stability; 1.5 Surfaces Grafted via Si-N Linkages 327 $a1.5.1 Preparation1.5.2 Thermal Stability; 1.5.2.1 The Thermal Treatment of the Si Surface with NH3; 1.5.2.2 Thermal Stability of the Modified Surfaces; 1.6 Summary; References; 2 Thermal Analysis to Discriminate the Stability of Biomedical Ultrahigh-Molecular-Weight Polyethylenes Formulations; 2.1 Introduction; 2.2 Suitability of TGA Analysis for the Study of Stability of Medical Polyethylene; 2.2.1 Introduction; 2.2.2 Degradation Curves of UHMWPE Depending on the Reaction Atmosphere; 2.2.3 Decomposition Processes of UHMWPE in Air; 2.2.3.1 Thermo-oxidation Process 327 $a2.2.3.2 Thermal Degradation Process of UHMWPE2.2.4 Irradiation Effects on the Thermogravimetric Curves of UHMWPE; 2.2.5 Stabilization of Polyethylene against Thermo-oxidative Degradation; 2.3 Activation Energies of Degradation Processes in the Thermal Decomposition of UHMWPE; References; 3 Materials Obtained by Solid-State Thermal Decomposition of Coordination Compounds and Metal-Organic Coordination Polymers; 3.1 Introduction; 3.2 Coordination Compounds and Metal-Organic Coordination Polymers as Precursors of Oxides; 3.2.1 Coordination Compounds with Carboxylic Acid as Ligand 327 $a3.2.2 Coordination's Compounds as Precursors in the Combustion Synthesis of Oxides3.2.3 Metal-Organic Coordination Polymers as Precursors of Oxides; 3.3 Coordination Compounds and Metal-Organic Coordination Polymers as Precursors of Sulfides; 3.4 Coordination Compounds as Precursors of Composites; 3.5 Coordination Compounds and Metal-Organic Coordination Polymers as Precursors of New Complexes; 3.6 Coordination Compounds and Metal-Organic Coordination Polymers as Precursor of Metals; 3.7 Coordination Compounds as Precursor of Nitrides; 3.8 Other Materials; 3.9 Conclusions; References 327 $a4 Methods for Limiting the Flammability of High-Density Polyethylene with Magnesium Hydroxide4.1 Introduction; 4.2 Experimental Part; 4.2.1 Materials; 4.2.2 Sample Preparation; 4.2.3 Methods of Testing; 4.3 Results and Discussion; 4.3.1 Thermal Stability; 4.3.2 Flammability; 4.3.2.1 UL-94 Test; 4.3.2.2 Limiting Oxygen Index (LOI); 4.3.2.3 Cone Calorimetry; 4.3.3 Mechanical Properties; 4.3.4 Microstructure of Fracture Surface of Composites; 4.4 Conclusions; References; 5 Thermal Analysis in the Study of Polymer (Bio)-degradation; 5.1 Introduction; 5.2 Differential Scanning Calorimetry 327 $a5.2.1 Melting Profile 330 $aStrong bonds form stronger materials. For this reason, the investigation on thermal degradation of materials is a significantly important area in research and development activities. The analysis of thermal stability can be used to assess the behavior of materials in the aggressive environmental conditions, which in turn provides valuable information about the service life span of the materiel. Unlike other books published so far that have focused on either the fundamentals of thermal analysis or the degradation pattern of the materials, this book is specifically on the mechanism of degrada 410 0$aMaterials Degradation and Failure 606 $aMaterials at high temperatures 606 $aMaterials$xDeterioration 606 $aMaterials$xAnalysis 615 0$aMaterials at high temperatures. 615 0$aMaterials$xDeterioration. 615 0$aMaterials$xAnalysis. 676 $a620.1/1217 702 $aTiwari$b Atul 702 $aRaj$b Baldev 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816653103321 996 $aReactions and mechanisms in thermal analysis of advanced materials$94029006 997 $aUNINA