LEADER 00808nam0-22002651i-450 001 9910230160303321 005 20171205103321.0 010 $a978-88-317-1894-3 100 $a20030910d2014----km-y0itay50------ba 101 0 $aita 102 $aIT 200 1 $aSemiologia del paesaggio italiano$fdi Eugenio Turri$gintroduzione di Francesco Vallerani 210 $aVenezia$cMarsilio$d2014 215 $aXII, 304 p., 74 fot.$d22 cm 225 1 $aBiblioteca 610 0 $aItalia$aPaesaggio 700 1$aTurri,$bEugenio$f<1927-2005>$032919 702 1$aVallerani,$bFrancesco$f<1954- > 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a9910230160303321 952 $aA-It 0972$bBRAU/ILFGE 2017/29$fILFGE 959 $aILFGE 996 $aSemiologia del paesaggio italiano$9151379 997 $aUNINA LEADER 11504nam 2200697 a 450 001 9910816636503321 005 20240313211341.0 010 $a1-84973-104-7 035 $a(CKB)2480000000006818 035 $a(EBL)1185385 035 $a(OCoLC)642693382 035 $a(SSID)ssj0000578412 035 $a(PQKBManifestationID)12289985 035 $a(PQKBTitleCode)TC0000578412 035 $a(PQKBWorkID)10577523 035 $a(PQKB)10910565 035 $a(MiAaPQ)EBC1185385 035 $a(Au-PeEL)EBL1185385 035 $a(CaPaEBR)ebr10627705 035 $a(CaONFJC)MIL872013 035 $a(PPN)198472315 035 $a(MiAaPQ)EBC7424580 035 $a(Au-PeEL)EBL7424580 035 $a(EXLCZ)992480000000006818 100 $a20120227d2010 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCompound energy systems $eoptimal operation methods /$fShin'ya Obara and Arif Hepbasli 205 $a1st ed. 210 $aCambridge $cRoyal Society of Chemistry$dc2010 215 $a1 online resource (283 p.) 225 1 $aISSN 225 0$aRSC energy series ;$vno. 3 300 $aDescription based upon print version of record. 311 $a1-84973-031-8 320 $aIncludes bibliographical references and index. 327 $aCompound Energy Systems -- Contents -- Chapter 1 Background -- 1.1 Distributed Energy System -- 1.2 Independent Microgrid -- 1.3 Distribution Plan of Energy System -- References -- Chapter 2 Operation Analysis of a Compound Energy System - Exhaust Heat Use Plan when Connecting Solar Modules to a Fuel Cell Network -- 2.1 Introduction -- 2.2 The Fuel Cell Energy Network with Solar Modules -- 2.2.1 Urban Area Model -- 2.2.2 Characteristic of the Solar Module -- 2.2.3 Hot-Water Piping Network -- 2.2.4 Facility Scheme -- 2.3 The Path Plan of a Hot-Water Piping Network -- 2.3.1 Heat-Transport Model of a Hot-Water Piping Network -- 2.3.2 Heat-Transfer Model of Hot-Water Piping -- 2.3.3 Heat Energy Balance -- 2.3.4 Analysis Method -- 2.3.5 Analysis Flow -- 2.4 Case Study -- 2.4.1 Specifications of Hot-Water Piping -- 2.4.2 Analysis Procedure -- 2.4.3 Analysis Conditions and Parameters -- 2.5 Analysis Results -- 2.5.1 Results of the Hot-Water Piping Path in FEN that Does not Connect Solar Modules -- 2.5.2 Influences that Changes in the Output of Solar Modules Have on a Hot-Water Piping Network -- 2.6 Conclusions -- Acknowledgments -- Nomenclature -- Subscripts -- The names of buildings -- References -- Chapter 3 Operation of Compound Energy System - Fuel Cell Network System Considering Reduction in Fuel Cell Capacity -- 3.1 Introduction -- 3.2 Load Leveling and Arrangement Plan of Fuel Cell -- 3.2.1 Fuel Cell Network System -- 3.2.2 Power-Generation Characteristics of the Fuel Cell -- 3.2.3 Load Leveling Using Water Electrolysis -- 3.2.4 Distribution of the Fuel Cell -- 3.2.5 Energy-Balance Equation -- 3.2.6 Operating Method of the System -- 3.3 Analysis Method -- 3.3.1 Procedure of Analysis -- 3.3.2 Solution Parameters -- 3.4 Case Study -- 3.4.1 Energy Demand Pattern and Network System -- 3.4.2 Reduction Effect of Fuel Cell Facility Capacity. 327 $a3.4.3 Route Planning Result of Hot-Water Piping -- 3.4.4 Result of a Fuel Cell Arrangement Plan -- 3.5 Conclusions -- Acknowledgments -- Nomenclature -- Subscripts -- References -- Chapter 4 Power-Independent House Using PEFC - Operation Plan of a Combined Fuel Cell Cogeneration, Solar Module, and Geothermal Heat Pump System -- 4.1 Introduction -- 4.2 Fuel Cell, Solar Modules, and Geothermal Heat Pump Combined System -- 4.2.1 Scheme of Combined System -- 4.2.2 Relational Expression -- 4.2.3 Energy Supply Path -- 4.3 Energy Balance and Objective Function -- 4.3.1 Objective Function of System -- 4.3.2 Multiobjective Optimization -- 4.4 Analysis Results -- 4.4.1 Results of Optimization -- 4.4.2 Equipment Capacity -- 4.4.3 Objective Function and Characteristics of Operation Plan -- 4.5 Conclusions -- Acknowledgments -- Nomenclature -- Greek Symbols -- Subscripts -- References -- Chapter 5 PEFC/Engine Generator Compound Energy System (1) - CO2 Discharge Characteristic of PEFC/Hydrogen-Gas-Engine Hybrid Cogeneration -- 5.1 Introduction -- 5.2 System Scheme -- 5.2.1 HCGS Model -- 5.2.2 Compression of Reformed Gas -- 5.2.3 Operating Method of System -- 5.2.4 Power-Generation-Efficiency Characteristics of HCGS -- 5.3 Equipment Characteristics -- 5.3.1 Output Characteristics of NEG -- 5.3.2 Output Characteristics of PEFC -- 5.3.3 Carbon-Dioxide Emission Characteristics of Boiler -- 5.4 Power and Heat Output Characteristics of HCGS -- 5.4.1 System Operation Map -- 5.4.2 Operation Map of HCGS -- 5.5 Case Study -- 5.5.1 Power and Heat Demand Model -- 5.5.2 Capacity Setup -- 5.5.3 Analysis Method -- 5.6 Results and Discussion -- 5.6.1 Operation Plan of a Representative Day -- 5.6.2 Annual Operation Plan -- 5.7 Conclusion -- Acknowledgments -- Nomenclature -- Greek Symbols -- Subscripts -- Equipment -- References. 327 $aChapter 6 PEFC/Engine Generator Compound Energy System (2)-Power-Generation Efficiency of an Independent Microgrid Composed of Distributed Engine Generators -- 6.1 Introduction -- 6.2 System Description -- 6.2.1 Independent Microgrid Configuration -- 6.2.2 Control of the Number of Engine Generators -- 6.3 Diesel Engine Generator System -- 6.3.1 Engine Generator Specifications -- 6.3.2 Output Characteristics of a Small-Scale Diesel Engine Cogeneration System -- 6.4 Case Study -- 6.4.1 Analysis Method -- 6.4.2 Weather Conditions in Sapporo -- 6.4.3 Energy Demand Models -- 6.5 Results and Discussion -- 6.5.1 Load Distribution of the Engine Generator -- 6.5.2 Number of Distributions, and Full Force Power -- 6.5.3 Output Characteristics of Each Engine Generator -- 6.5.4 Power-Generation Efficiency -- 6.5.5 Power Cost -- 6.6 Conclusions -- Acknowledgments -- Nomenclature -- References -- Chapter 7 PEFC/Green Energy Compound System (1) - Operation Planning of a PEFC and Photovoltaics with Prediction of Electricity Production Using GA and Numerical Weather Information -- 7.1 Introduction -- 7.2 System Configurations -- 7.2.1 PEFC and Photovoltaics Compound Microgrid -- 7.2.2 System Operation -- 7.3 Analysis Method -- 7.3.1 Power System -- 7.3.2 Heat Balance -- 7.3.3 Optimal Analysis Using GA -- 7.4 Case Analysis -- 7.4.1 Equipment Specifications -- 7.4.2 GA Parameters -- 7.4.3 Energy Demand Pattern -- 7.4.4 Error of the NWI -- 7.5 Results and Discussion -- 7.5.1 Operation Planning -- 7.5.2 Influence of the Numerical Weather Information Error -- 7.5.3 Fuel Consumption -- 7.6 Conclusions -- Acknowledgements -- Nomenclature -- Greek Symbols -- Subscripts -- References -- Chapter 8 PEFC/Green Energy Compound System (2) - Overall Efficiency of a PEFC with a Bioethanol Solar Reforming System for Individual Houses -- 8.1 Introduction -- 8.2 Material and Method. 327 $a8.2.1 System Block Diagram -- 8.2.2 Fuel and Reformed Gas System -- 8.2.3 Electric Power System -- 8.2.4 Loss and Auxiliary-Machinery Power -- 8.2.5 Operation Method of the System -- 8.3 Heat-Transfer Analysis -- 8.3.1 Efficiency of Reforming Component -- 8.3.2 Heat Transfer in the Catalyst Layer -- 8.3.3 Reforming Reaction and Analytical Model for the Catalyst Layer -- 8.3.4 Heat Diffusion Equation -- 8.4 Analysis Method -- 8.4.1 Temperature Distribution of the Catalyst Layer, and the Composition Distribution -- 8.4.2 Amount of Exhaust Heat -- 8.5 Operation Case -- 8.5.1 Specification of the Reforming Component -- 8.5.2 Storage of the Reformed Gas -- 8.5.3 Installation Requirements of the System and Demand Characteristic -- 8.6 Results and Discussion -- 8.6.1 Temperature Distribution of the Catalyst Layer -- 8.6.2 Composition of the Process Gas -- 8.6.3 Amount of Hydrogen Generated -- 8.6.4 Production of Electricity and Amount of Purchased Power -- 8.6.5 Operation of the Exhaust Heat -- 8.6.6 Overall Efficiency -- 8.7 Conclusions -- Acknowledgement -- Nomenclature -- Greek Symbols -- Subscripts -- References -- Chapter 9 PEFC/Green Energy Compound System (3) - Fuel Cell Microgrid with Wind-Power Generation -- 9.1 Introduction -- 9.2 Microgrid Model -- 9.3 Response Characteristic of System Configuration Equipment -- 9.3.1 Power-Generation Characteristic of Fuel Cell -- 9.3.2 Output Characteristics of City Gas Reformer -- 9.3.3 Power-Generation Characteristics of Wind-Power Generation -- 9.3.4 Generation Efficiency of the Fuel Cell System -- 9.3.5 Inverter and System Interconnection Device -- 9.4 Control Parameters and Analysis Method -- 9.5 Load Response Characteristics of the Microgrid -- 9.5.1 Step Response -- 9.5.2 Load Response Characteristics of Cold-Region Houses -- 9.5.3 Power-Generation Efficiency -- 9.6 Conclusions -- Acknowledgments. 327 $aNomenclature -- References -- Chapter 10 Solar Cell/Diesel Engine Compound System with Production-of-Electricity Prediction -- 10.1 Introduction -- 10.2 Independent Microgrid with Renewable Energy and Battery -- 10.2.1 System Configuration -- 10.2.2 Dynamic Operation Planning -- 10.2.3 Solar Cell System -- 10.3 Power Balance and Objective Function -- 10.3.1 Power Balance -- 10.3.2 Objective Function -- 10.4 Analysis Method -- 10.4.1 Production-of-Electricity Prediction Algorithm of Solar Cell (PAS) -- 10.4.2 Optimization of Dynamic Operation Using a Genetic Algorithm (GA) -- 10.4.3 Analysis Flow of Operation Planning -- 10.5 Case Analysis -- 10.5.1 Analysis System -- 10.5.2 Analysis Conditions -- 10.6 Analysis Results -- 10.6.1 Prediction of Solar Cell Output Power via PAS -- 10.6.2 Prediction Error of PAS, and Operation Method of Generating Equipment -- 10.6.3 Result of Dynamic Operation Planning -- 10.7 Conclusions -- References -- Chapter 11 Dynamic Characteristics of Power for PEFC Compound System -- 11.1 Introduction -- 11.2 System Description -- 11.2.1 Outline of System -- 11.2.2 System-Control Block Diagram -- 11.2.3 The Analysis Method -- 11.3 System Control -- 11.3.1 The Input of the System -- 11.3.2 Control of Startup -- 11.3.3 Control of Heat Output -- 11.3.4 Town-Gas Consumption -- 11.4 Results and Discussion -- 11.4.1 Control Variables and the Response -- 11.4.2 The Response Characteristics of the System -- 11.4.3 Operation of the System by the Selected Control Variables -- 11.5 Conclusions -- Acknowledgments -- Nomenclature -- Equipment Symbols -- References -- Chapter 12 Performance Analysis and Assessment of Compound Energy Systems Using Exergy Analysis Method -- 12.1 Introduction -- 12.2 Energetic and Exergetic Relations -- 12.2.1 Dead (or Reference) State -- 12.2.2 Relations Used. 327 $a12.3 Application of Exergy Analysis to Various Compound Energy Systems. 330 $aThis book, a distillation of information only touched upon in other books, is aimed at undergraduate and postgraduate students, scientists, engineers and industrialists with an interest in the field. 410 0$aRSC Energy Series 606 $aDistributed generation of electric power 606 $aElectric power production 615 0$aDistributed generation of electric power. 615 0$aElectric power production. 676 $a333.79 700 $aObara$b Shin'ya$01594196 701 $aHepbasli$b Arif$01690154 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816636503321 996 $aCompound energy systems$94065706 997 $aUNINA