LEADER 02587nam 2200625 a 450 001 9910816102103321 005 20200520144314.0 010 $a1-134-80027-4 010 $a9786610110865 010 $a1-134-80028-2 010 $a1-280-11086-4 010 $a0-203-02810-4 024 7 $a10.4324/9780203028100 035 $a(CKB)1000000000005553 035 $a(EBL)168393 035 $a(OCoLC)171114920 035 $a(SSID)ssj0000282294 035 $a(PQKBManifestationID)11225570 035 $a(PQKBTitleCode)TC0000282294 035 $a(PQKBWorkID)10317128 035 $a(PQKB)10239809 035 $a(MiAaPQ)EBC168393 035 $a(Au-PeEL)EBL168393 035 $a(CaPaEBR)ebr10017164 035 $a(CaONFJC)MIL11086 035 $a(OCoLC)70763309 035 $a(EXLCZ)991000000000005553 100 $a19950328d1996 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA new introduction to modal logic /$fG.E. Hughes and M.J. Cresswell 205 $a1st ed. 210 $aLondon ;$aNew York $cRoutledge$d1996 215 $a1 online resource (x, 421 pages) $cillustrations 300 $aDescription based upon print version of record. 311 0 $a0-415-12599-5 311 0 $a0-415-12600-2 320 $aIncludes bibliographical references (p. 384-397) and index. 327 $aBook Cover; Title; Contents; Preface; The Basic Notions; The Systems K, T and D; The Systems S4, S5, B, Triv and Ver; Testing for validity; Conjunctive Normal Form; Completeness; Canonical Models; Finite Models; Incompleteness; Frames and Systems; Strict Implication; Glimpses Beyond; The Lower Predicate Calculus; The Completeness of Modal LPC; Expanding Domains; Modality and Existence; Identity and Descriptions; Intensional Objects; Further Issues; Axioms, Rules and Systems; Solutions to Selected Exercises; Bibliography; Index; 330 $aThis entirely new work guides the reader through the most basic systems of modal propositional logic up to systems of modal predicate with identity, dealing with both technical developments and discussing philosophical applications. 606 $aModality (Logic) 615 0$aModality (Logic) 676 $a160 700 $aHughes$b G. E$g(George Edward),$f1918-$047851 701 $aCresswell$b M. J$047852 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816102103321 996 $aA new introduction to modal logic$94122754 997 $aUNINA