LEADER 03232nam 22006851c 450 001 9910789676003321 005 20200115203623.0 010 $a1-4725-4228-2 010 $a1-283-20685-4 010 $a9786613206855 010 $a1-4411-6794-3 024 7 $a10.5040/9781472542281 035 $a(CKB)2670000000106703 035 $a(EBL)742712 035 $a(OCoLC)741691773 035 $a(SSID)ssj0000521351 035 $a(PQKBManifestationID)11333291 035 $a(PQKBTitleCode)TC0000521351 035 $a(PQKBWorkID)10533553 035 $a(PQKB)11763477 035 $a(MiAaPQ)EBC742712 035 $a(Au-PeEL)EBL742712 035 $a(CaPaEBR)ebr10867511 035 $a(CaONFJC)MIL320685 035 $a(OCoLC)893335498 035 $a(OCoLC)1138548872 035 $a(UtOrBLW)bpp09255820 035 $a(EXLCZ)992670000000106703 100 $a20140929d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCanonizing hypertext $eexplorations and constructions $fAstrid Ensslin 210 1$aNew York $cContinuum $d2007. 215 $a1 online resource (207 p.) 225 1 $aContinuum literary studies 300 $aDescription based upon print version of record. 311 $a0-8264-9558-3 320 $aIncludes bibliographical references (pages [173]-193) and index 327 $aIntroduction -- 1. Hypertextual Ontologies -- 2. Hypertext and the Question of Canonicity -- 3. A Hypertext Canon -- 4. Literary Competence - Conceptual Adaptations -- 5. Hypertext in the Literature Classroom -- Conclusion -- Bibliography -- Index 330 8 $a This innovative monograph focuses on a contemporary form of computer-based literature called 'literary hypertext', a digital, interactive, communicative form of new media writing.  Canonizing Hypertext combines theoretical and hermeneutic investigations with empirical research into the motivational and pedagogic possibilities of this form of literature.  It focuses on key questions for literary scholars and teachers: How can literature be taught in such a way as to make it relevant for an increasingly hypermedia-oriented readership? How can the rapidly evolving new media be integrated into curricula that still seek to transmit 'traditional' literary competence?  How can the notion of literary competence be broadened to take into account these current trends?  This study, which argues for hypertext's integration in the literary canon, offers a critical overview of developments in hypertext theory, an exemplary hypertext canon and an evaluation of possible classroom applications 410 0$aContinuum literary studies. 606 $aCriticism$xData processing 606 $2Literary studies: from c 1900 - 606 $aCanon (Literature) 606 $aHypertext systems 615 0$aCriticism$xData processing. 615 0$aCanon (Literature) 615 0$aHypertext systems. 676 $a801/.9590285 700 $aEnsslin$b Astrid$0317506 801 0$bUtOrBLW 801 1$bUtOrBLW 801 2$bUkLoBP 906 $aBOOK 912 $a9910789676003321 996 $aCanonizing hypertext$93704387 997 $aUNINA LEADER 02782nam 2200529 450 001 9910816033003321 005 20200106153957.0 010 $a1-4704-5399-1 035 $a(CKB)4940000000160190 035 $a(MiAaPQ)EBC5990837 035 $a(RPAM)21564451 035 $a(PPN)242522386 035 $a(EXLCZ)994940000000160190 100 $a20200106h20192019 uy| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aQuiver grassmannians of extended Dynkin type D$hPart I$iSchubert systems and decompositions into affien spaces /$fOliver Lorscheid, Thorsten Weist 210 1$aProvidence, RI :$cAmerican Mathematical Society,$d[2019] 210 4$dİ2019 215 $a1 online resource (90 pages) $cillustrations 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vSeptember 2019, volume 261, number 1258 311 $a1-4704-3647-7 320 $aIncludes bibliographical references. 327 $aBackground -- Schubert systems -- First applications -- Schubert decompositions for type Dn -- Proof of Theorem 4.1. 330 $a"Let Q be a quiver of extended Dynkin type Dn. In this first of two papers, we show that the quiver Grassmannian Gre(M) has a decomposition into affine spaces for every dimension vector e and every indecomposable representation M of defect -1 and defect 0, with exception of the non-Schurian representations in homogeneous tubes. We characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of Gre(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution we develop the theory of Schubert systems. In Part 2 of this pair of papers, we extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society ;$vvol. 261, no. 1258. 517 3 $aSchubert systems and decompositions into affine spaces 606 $aDynkin diagrams 606 $aGrassmann manifolds 606 $aMathematics 615 0$aDynkin diagrams. 615 0$aGrassmann manifolds. 615 0$aMathematics. 676 $a516.3/52 686 $a13F60$a14F45$a14M15$a14N15$a16G20$a05E10$a14M17$a16G60$2msc 700 $aLorscheid$b Oliver$01703551 702 $aWeist$b Thorsten 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816033003321 996 $aQuiver grassmannians of extended Dynkin type D$94088839 997 $aUNINA