LEADER 01367nam--2200421---450 001 990006059420203316 005 20230505122853.0 010 $a978-3-05-006276-1 035 $a000605942 035 $aUSA01000605942 035 $a(ALEPH)000605942USA01 035 $a000605942 100 $a20150716d2014----km-y0itay50------ba 101 $aeng 102 $aDE 105 $a||||||||001yy 200 1 $a<> crosslinguistics of zero-marking of spatial relations$fThomas Stolz, Sander Lestrade, Christel Stolz 210 $aBerlin$aBoston$cDe Grutyer Mouton$d2014 215 $aXVI, 404 p.$d24 cm 225 2 $aStudia typologica$v15 410 0$aStudia typologica$v, 15 606 0 $aLinguistica comparata$2BNCF 676 $a410 700 1$aSTOLZ,$bThomas$0620679 701 1$aLESTRADE,$bSander$0620680 701 1$aSTOLZ,$bChristel$0620681 801 0$aIT$bsalbc$gISBD 912 $a990006059420203316 951 $aIV.2. 2627$b10879 L.G.$cIV.2.$d377749 951 $aIV.2. 2627a$b269199 L.M.$cIV.2.$d426084 951 $aIV.2. 2627 b$b283481 L.M.$cIV.2.$d554900 959 $aBK 969 $aUMA 979 $aCHIARA$b90$c20150716$lUSA01$h1136 979 $aCHIARA$b90$c20150716$lUSA01$h1149 979 $aCHIARA$b90$c20150716$lUSA01$h1305 996 $aCrosslinguistics of zero-marking of spatial relations$91102569 997 $aUNISA LEADER 05649nam 2200697 450 001 9910815998803321 005 20210715051609.0 010 $a9781119004967 (electronic book) 010 $a1-119-00813-1 010 $a1-119-00496-9 010 $a1-119-00812-3 035 $a(CKB)3710000000239194 035 $a(EBL)1784145 035 $a(OCoLC)890981810 035 $a(SSID)ssj0001375281 035 $a(PQKBManifestationID)11813094 035 $a(PQKBTitleCode)TC0001375281 035 $a(PQKBWorkID)11332116 035 $a(PQKB)11263589 035 $a(MiAaPQ)EBC1784145 035 $a(Au-PeEL)EBL1784145 035 $a(CaPaEBR)ebr10930292 035 $a(OCoLC)890720597 035 $a(EXLCZ)993710000000239194 100 $a20140925h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBio-inspired routing protocols for vehicular ad-hoc networks /$fSalim Bitam, Abdelhamid Mellouk 210 1$aLondon, England :$cWiley,$d[2014] 210 4$dİ2014 215 $a1 online resource (127 pages) 225 1 $aFocus series 300 $aDescription based upon print version of record. 311 $a1-322-15000-1 311 $a1-84821-663-7 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover page; Half-Title page ; Title page; Copyright page; Contents; Preface; Introduction; Acronyms and Notations; 1: Vehicular Ad Hoc Networks; 1.1. VANET definition, characteristics and applications; 1.1.1. Definition of vehicular ad hoc network; 1.1.2. Characteristics of vehicular ad hoc networks; 1.1.2.1. Vehicle velocity; 1.1.2.2. VANET density; 1.1.2.3. Node heterogeneity; 1.1.2.4. Mobility model; 1.1.3. Applications of vehicular ad hoc networks; 1.1.3.1. Road safety applications; 1.1.3.2. Vehicular authority services; 1.1.3.3. Enhanced driving 327 $a1.1.3.4. Business and entertainment services1.2. VANET architectures; 1.2.1. Vehicular WLAN/cellular architecture; 1.2.2. Pure ad hoc architecture; 1.2.3. Hybrid architecture; 1.3. Mobility models; 1.3.1. Random-based mobility models; 1.3.1.1. Random waypoint mobility model; 1.3.1.2. Random walk mobility model; 1.3.1.3. Limitations of random-based mobility models; 1.3.2. Geographic map-based mobility models; 1.3.2.1. Manhattan grid mobility model; 1.3.2.2. City section mobility model; 1.3.2.3. Freeway mobility model; 1.3.2.4. Limitations of geographic map-based mobility models 327 $a1.3.3. Group-based mobility1.3.3.1. Reference point group mobility model; 1.3.3.2. Virtual track mobility model; 1.3.3.3. Limitations of group-based mobility model; 1.3.4. Prediction-based mobility models; 1.3.4.1. Gauss-Markov based mobility model; 1.3.4.2. Markov-History based mobility model; 1.3.4.3. Discussion of prediction-based mobility models; 1.3.5. Software-tools-based mobility models; 1.3.5.1. SUMO framework; 1.3.5.2. VanetMobiSim framework; 1.3.5.3. MOVE framework; 1.3.5.4. Discussion of software-tools-based mobility models; 1.4. VANET challenges and issues; 1.4.1. VANET routing 327 $a1.4.2. Vehicular network scalability1.4.3. Computational complexity in VANET networking; 1.4.4. Routing robustness and self-organization in vehicular networks; 1.4.5. Vehicular network security; 1.5. Bibliography; 2: Routing for Vehicular Ad Hoc Networks; 2.1. Basic concepts; 2.1.1. Single-hop versus multi-hop beaconing in VANETs; 2.1.1.1. Single-hop beaconing; 2.1.1.2. Multi-hop beaconing; 2.1.2. Routing classification of VANETs; 2.1.2.1. Topology-based routing; 2.1.2.1.1. Proactive routing; 2.1.2.1.2. Reactive routing; 2.1.2.1.3. Hybrid routing; 2.1.2.2. Geography-based routing 327 $a2.1.2.3. Cluster-based routing2.2. Quality-of-service of VANET routing; 2.2.1. Quality-of-service definition; 2.2.2. Quality-of-service criteria; 2.2.2.1. Average end-to-end delay (measured in milliseconds); 2.2.2.2. Average jitter (measured in milliseconds); 2.2.2.3. Average available bandwidth (measured in KB/s); 2.2.2.4. Packet delivery ratio; 2.2.2.5. Normalized overhead load; 2.3. VANET routing standards; 2.3.1. Dedicated short range communication; 2.3.2. Standards for wireless access in vehicular environments (WAVE); 2.3.3. VANET standards related to routing layers 327 $a2.3.3.1. Controller area network (ISO 11898) 330 $aVehicular Ad-Hoc Networks (VANETs) play a key role to develop Intelligent Transportation Systems (ITS) aiming to achieve road safety and to guaranty needs of drivers and passengers, in addition to improve the transportation productivity. One of the most important challenges of this kind of networks is the data routing between VANET nodes which should be routed with high level of Quality of Service (QoS) to ensure receiving messages in the time. Then, the driver can take the appropriate decision to improve the road safety. In the literature, there are several routing protocols for VANETs which 410 0$aColeccio?n "FOCUS." 606 $aVehicular ad hoc networks (Computer networks) 606 $aRouting protocols (Computer network protocols) 615 0$aVehicular ad hoc networks (Computer networks) 615 0$aRouting protocols (Computer network protocols) 676 $a388.3124 700 $aBitam$b Salim$01606650 702 $aMellouk$b Abdelhamid 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815998803321 996 $aBio-inspired routing protocols for vehicular ad-hoc networks$93932546 997 $aUNINA