LEADER 02684nam 2200577 450 001 9910815785003321 005 20230808195508.0 010 $a3-11-042911-X 024 7 $a10.1515/9783110438222 035 $a(CKB)3710000000865117 035 $a(MiAaPQ)EBC4691415 035 $a(DE-B1597)452446 035 $a(OCoLC)959150132 035 $a(OCoLC)960014013 035 $a(DE-B1597)9783110438222 035 $a(Au-PeEL)EBL4691415 035 $a(CaPaEBR)ebr11268045 035 $a(CaONFJC)MIL956109 035 $a(EXLCZ)993710000000865117 100 $a20161010h20162016 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aAdvanced calculus $edifferential calculus and Stokes' theorem /$fPietro-Luciano Buono 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2016. 210 4$dİ2016 215 $a1 online resource (314 pages) $cillustrations 225 1 $aDe Gruyter Graduate 311 $a3-11-043822-4 311 $a3-11-043821-6 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tPreface -- $t1. Introduction -- $t2. Calculus of Vector Functions -- $t3. Tangent Spaces and 1-forms -- $t4. Line Integrals -- $t5. Differential Calculus of Mappings -- $t6. Applications of Differential Calculus -- $t7. Double and Triple Integrals -- $t8. Wedge Products and Exterior Derivatives -- $t9. Integration of Forms -- $t10. Stokes' Theorem and Applications -- $tBibliography -- $tIndex 330 $aThis textbook offers a high-level introduction to multi-variable differential calculus. Differential forms are introduced incrementally in the narrative, eventually leading to a unified treatment of Green's, Stokes' and Gauss' theorems. Furthermore, the presentation offers a natural route to differential geometry. Contents:Calculus of Vector FunctionsTangent Spaces and 1-formsLine IntegralsDifferential Calculus of MappingsApplications of Differential CalculusDouble and Triple IntegralsWedge Products and Exterior DerivativesIntegration of FormsStokes' Theorem and Applications 410 0$aDe Gruyter graduate. 606 $aDifferential calculus 606 $aMathematical analysis 606 $aStokes' theorem 615 0$aDifferential calculus. 615 0$aMathematical analysis. 615 0$aStokes' theorem. 676 $a515/.33 700 $aBuono$b Pietro-Luciano$01675086 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815785003321 996 $aAdvanced calculus$94040325 997 $aUNINA