LEADER 05430nam 2200673Ia 450 001 9910815642603321 005 20200520144314.0 010 $a1-281-31276-2 010 $a9786611312763 010 $a0-470-99939-X 010 $a0-470-99938-1 035 $a(CKB)1000000000413319 035 $a(EBL)351447 035 $a(OCoLC)437218697 035 $a(SSID)ssj0000309896 035 $a(PQKBManifestationID)11237642 035 $a(PQKBTitleCode)TC0000309896 035 $a(PQKBWorkID)10283539 035 $a(PQKB)11722742 035 $a(MiAaPQ)EBC351447 035 $a(Au-PeEL)EBL351447 035 $a(CaPaEBR)ebr10240515 035 $a(CaONFJC)MIL131276 035 $a(PPN)143489933 035 $a(EXLCZ)991000000000413319 100 $a20010409d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdacontent 183 $acr$2rdacarrier 200 00$aSolid-state NMR spectroscopy $eprinciples and applications /$fedited by Melinda J. Duer 205 $a1st ed. 210 $aOxford ;$aMalden, MA $cBlackwell Science$d2002 215 $a1 online resource (562 pages) 300 $aDescription based upon print version of record. 311 $a0-632-05351-8 320 $aIncludes bibliographical references and index. 327 $aSolid-State NMR Spectroscopy Principles and Applications; List of Contributors; Contents; Index; Preface; Acknowledgements; Part I The Theory of Solid-State NMR and its Experiments; 1 The Basics of Solid-State NMR; 1.1 The vector model of pulsed NMR; 1.1.1 Nuclei in a static, uniform magnetic field; 1.1.2 The effect of rf pulses; 1.2 The quantum mechanical picture: hamiltonians and the Schro?dinger equation; Box 1.1 Quantum mechanics and NMR; 1.2.1 Nuclei in a static, uniform field; 1.2.2 The effect of rf pulses; Box 1.2 Exponential operators, rotation operators and rotations 327 $a1.3 The density matrix representation and coherences1.3.1 Coherences and populations; 1.3.2 The density operator at thermal equilibrium; 1.3.3 Time evolution of the density matrix; 1.4 Nuclear spin interactions; 1.4.1 The chemical shift and chemical shift anisotropy; 1.4.2 Dipole-dipole coupling; Box 1.3 Basis sets for multispin systems; 1.4.3 Quadrupolar coupling; 1.5 Calculating NMR powder patterns; 1.6 General features of NMR experiments; 1.6.1 Multidimensional NMR; 1.6.2 Phase cycling; 1.6.3 Quadrature detection; Box 1.4 The NMR spectrometer; References 327 $a2 Essential Techniques for Spin-1/2 Nuclei2.1 Introduction; 2.2 Magic-angle spinning (MAS); 2.2.1 Spinning sidebands; 2.2.2 Rotor or rotational echoes; 2.2.3 Removing spinning sidebands; 2.2.4 Magic-angle spinning for homonuclear dipolar couplings; 2.3 High-power decoupling; 2.4 Multiple pulse decoupling sequences; Box 2.1 Average hamiltonian theory and the toggling frame; 2.5 Cross-polarization; 2.5.1 Theory; 2.5.2 Experimental details; Box 2.2 Cross-polarization and magic-angle spinning; 2.6 Solid or quadrupole echo pulse sequence; References; 3 Dipolar Coupling: Its Measurement and Uses 327 $a3.1 IntroductionBox 3.1 The dipolar hamiltonian in terms of spherical tensor operators; 3.2 Techniques for measuring homonuclear dipolar couplings; 3.2.1 Recoupling pulse sequences; Box 3.2 Analysis of the DRAMA pulse sequence; 3.2.2 Double-quantum filtered experiments; 3.2.3 Rotational resonance; Box 3.3 Excitation of double-quantum coherence under magic-angle spinning; 3.3 Techniques for measuring heteronuclear dipolar couplings; Box 3.4 Analysis of the C7 pulse sequence for exciting double-quantum coherence in dipolar-coupled spin pairs; 3.3.1 Spin-echo double resonance 327 $aBox 3.5 Theory of rotational resonance3.3.2 Rotational-echo double resonance; Box 3.6 Analysis of the REDOR experiment; 3.4 Techniques for dipolar-coupled quadrupolar (spin-1/2) pairs; 3.4.1 Transfer of population in double resonance; 3.4.2 Rotational echo, adiabatic passage, double resonance; 3.5 Techniques for measuring dipolar couplings between quadrupolar nuclei; 3.6 Correlation experiments; 3.6.1 Homonuclear correlation experiments for spin-systems; 3.6.2 Homonuclear correlation experiments for quadrupolar spin systems; 3.6.3 Heteronuclear correlation experiments for spin-1/2 327 $a3.7 Spin-counting experiments 330 $aThis book is for those familiar with solution-state NMR who are encountering solid-state NMR for the first time. It presents the current understanding and applications of solid-state NMR with a rigorous but readable approach, making it easy for someone who merely wishes to gain an overall impression of the subject without details. This dual requirement is met through careful construction of the material within each chapter. The book is divided into two parts: ""Fundamentals"" and ""Further Applications."" The section on Fundamentals contains relatively long chapters that deal with the bas 606 $aNuclear magnetic resonance spectroscopy 606 $aSolid state chemistry 615 0$aNuclear magnetic resonance spectroscopy. 615 0$aSolid state chemistry. 676 $a543.0877 676 $a543/.0877 701 $aDuer$b Melinda J$0511753 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815642603321 996 $aSolid-state NMR spectroscopy$91886523 997 $aUNINA