LEADER 02000oam 2200529 450 001 9910715351703321 005 20210225111117.0 035 $a(CKB)5470000002510517 035 $a(OCoLC)1140946334$z(OCoLC)974646760$z(OCoLC)1148170457 035 $a(OCoLC)995470000002510517 035 $a(EXLCZ)995470000002510517 100 $a20200217d1990 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPotential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada /$fby James C. Bowers ; prepared in cooperation with the National Park Service 210 1$aSacramento, California :$cU.S. Geological Survey,$d1990. 215 $a1 online resource (iv, 19 pages) $cillustrations, maps +$e1 plate 225 1 $aWater-resources investigations report ;$v89-4063 320 $aIncludes bibliographical references (page 19) 606 $aFlood forecasting$zGrapevine Canyon (Calif. and Nev.) 606 $aFlood forecasting$zDeath Valley National Park (Calif. and Nev.) 606 $aHydrology$zDeath Valley National Park (Calif. and Nev.) 606 $aFlood forecasting$2fast 606 $aHydrology$2fast 607 $aUnited States$zDeath Valley National Park$2fast 607 $aUnited States$zGrapevine Canyon$2fast 615 0$aFlood forecasting 615 0$aFlood forecasting 615 0$aHydrology 615 7$aFlood forecasting. 615 7$aHydrology. 700 $aBowers$b James C.$01385634 712 02$aGeological Survey (U.S.), 712 02$aUnited States.$bNational Park Service. 801 0$bOCLCE 801 1$bOCLCE 801 2$bCOP 801 2$bOCLCF 801 2$bUND 801 2$bGPO 906 $aBOOK 912 $a9910715351703321 996 $aPotential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada$93494122 997 $aUNINA LEADER 03841nam 2200589 450 001 9910815373103321 005 20220824045614.0 010 $a0-8218-9027-1 035 $a(CKB)3240000000070097 035 $a(EBL)3113285 035 $a(SSID)ssj0000700793 035 $a(PQKBManifestationID)11940500 035 $a(PQKBTitleCode)TC0000700793 035 $a(PQKBWorkID)10661505 035 $a(PQKB)11691907 035 $a(MiAaPQ)EBC3113285 035 $a(RPAM)17274766 035 $a(PPN)197102174 035 $a(EXLCZ)993240000000070097 100 $a20120427h20122012 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aArithmetic, geometry, cryptography and coding theory $e13th Conference on Arithmetic, Geometry, Cryptography and Coding Theory, March 14-18, 2011, CIRM, Marseille, France : Geocrypt 2011, June 19-24, 2011, Bastia, France /$fYves Aubry, Christophe Ritzenthaler, Alexey Zykin, editors 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2012] 210 4$dİ2012 215 $a1 online resource (194 p.) 225 1 $aContemporary mathematics,$v574$x0271-4132 300 $aDescription based upon print version of record. 311 $a0-8218-7572-8 320 $aIncludes bibliographical references. 327 $aPreface -- Construction of a complete addition law on Jacobians of hyperelliptic curves of genus two -- 1. Introduction -- 2. Construction -- Appendix A. Operation count -- References -- Number of points in an Artin-Schreier covering -- Introduction -- 1. Number of points in Artin-Schreier coverings: Weil bound -- 2. Study of an etale sheaf attached to a family of exponential sums -- 3. Cohomology spaces, and the proof of the theorem -- 4. Global monodromy, and a refinement of the theorem -- References -- Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents -- 1. Introduction -- 2. Preliminaries -- 3. Some functions that are not APN infinitely often -- 4. Polynomials of Kasami degree -- 5. Binomials that are not APN infinitely often -- References -- Rational curves with many rational points over a finite field -- 1. Introduction -- 2. Arithmetic of the curve -- 3. Geometry of with _{ }-lines, for odd -- 4. Geometry of with _{ }-lines, for even -- 5. Codes from Ballico-Hefez curves -- 6. Generalization of the curve -- References -- Enumeration of Splitting Subspaces over Finite Fields -- 1. Introduction -- 2. Easy cases and guesses -- 3. Splitting planes -- 4. Refinements and Extensions -- Appendix A. Vector Recurrences and Singer Cycles -- References -- The characteristic polynomials of abelian varieties of dimension 4 over finite fields -- 1. Introduction and results -- 2. The coefficients of Weil polynomials of degree 8 -- 3. Newton polygons -- 4. Supersingular case -- Acknowledgements -- References -- Degree growth, linear independence and periods of a class of rational dynamical systems. 410 0$aContemporary mathematics (American Mathematical Society).$v574$x0271-4132 606 $aAbelian varieties$vCongresses 606 $aDimension theory (Algebra)$vCongresses 615 0$aAbelian varieties 615 0$aDimension theory (Algebra) 676 $a510 686 $a11G10$a11G20$a11M38$a11R42$a11T06$a11T71$a14G10$a14G15$a14G50$a14Q05$2msc 702 $aAubry$b Yves$f1965- 702 $aRitzenthaler$b Christophe$f1976- 702 $aZykin$b Alexey$f1984- 712 12$aGeocrypt Conference$f(2011 :$eBastia, France), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815373103321 996 $aArithmetic, geometry, cryptography, and coding theory$9240365 997 $aUNINA