LEADER 02629nam 2200661 450 001 9910815303303321 005 20230803200341.0 010 $a3-11-025899-4 010 $a3-11-039199-6 024 7 $a10.1515/9783110258998 035 $a(MiAaPQ)EBC1130389 035 $a(DE-B1597)124125 035 $a(OCoLC)920798828 035 $a(OCoLC)921228112 035 $a(DE-B1597)9783110258998 035 $a(Au-PeEL)EBL1130389 035 $a(CaPaEBR)ebr11006472 035 $a(CaONFJC)MIL809301 035 $a(OCoLC)898769617 035 $a(EXLCZ)993360000000514867 100 $a20140513h20142014 uy| 0 101 0 $aeng 181 $ctxt$2rdacontent 182 $cn$2rdamedia 183 $anc$2rdacarrier 200 10$aSmooth analysis in Banach spaces /$fby Petr Ha?jek, Michal Johanis 210 1$aBerlin ;$aBoston :$cWalter de Gruyter GmbH & Company, KG,$d[2014] 210 4$dİ2014 215 $aXVI, 497 p. ;$d25 cm 225 1 $aDe Gruyter series in nonlinear analysis and applications,$x0941-813X ;$v19 300 $aMSC 46Bxx ; 46E15 ; 15A03 311 $a3-11-025898-6 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$tIntroduction --$tChapter 1. Fundamental properties of smoothness --$tChapter 2. Basic properties of polynomials on Rn --$tChapter 3. Weak continuity of polynomials and estimates of coefficients --$tChapter 4. Asymptotic properties of polynomials --$tChapter 5. Smoothness and structure --$tChapter 6. Structural behaviour of smooth mappings --$tChapter 7. Smooth approximation --$tBibliography --$tNotation --$tIndex 330 $aThe purpose of this book is to lay down the foundations for the abstract theory of Ck-smoothness in infinite-dimensional real Banach spaces, and investigate its intimate connections with the structural properties of the underlying spaces. 410 0$aDe Gruyter series in nonlinear analysis and applications ;$v19. 606 $aBanach spaces 606 $aNormed linear spaces 606 $aPolynomials 610 $aApproximation. 610 $aBanach Space. 610 $aPolynomial. 610 $aSmoothness. 610 $aVariational Principle. 615 0$aBanach spaces. 615 0$aNormed linear spaces. 615 0$aPolynomials. 676 $a515/.732 686 $aSK 600$2rvk 700 $aHa?jek$b Petr$048949 702 $aJohanis$b Michal 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815303303321 996 $aSmooth analysis in Banach spaces$94087748 997 $aUNINA