LEADER 11763nam 2200697 a 450 001 9910815260003321 005 20240912175031.0 010 $a9781118419397 010 $a1118419391 010 $a9781118671023 010 $a1118671023 010 $a9781118421161 010 $a1118421167 035 $a(CKB)4330000000000543 035 $a(DLC) 2012051688 035 $a(Au-PeEL)EBL1365051 035 $a(CaPaEBR)ebr10753402 035 $a(OCoLC)823085275 035 $a(PPN)179863770 035 $a(FR-PaCSA)88819117 035 $a(MiAaPQ)EBC1365051 035 $a(MiAaPQ)EBC4035161 035 $a(FRCYB88819117)88819117 035 $a(Perlego)1002098 035 $a(Perlego)2771416 035 $a(EXLCZ)994330000000000543 100 $a20121227d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMetal failures $emechanisms, analysis, prevention /$fArthur J. McEvily 205 $a2nd ed. 210 $aHoboken, N.J. $cJohn Wiley & Sons, Inc.$d2013 215 $axv, 479 p. $cill 311 08$a9781118163962 311 08$a1118163966 311 08$a9781299830967 311 08$a129983096X 320 $aIncludes bibliographical references and indexes. 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Failure Analysis -- I. Introduction -- II. Examples of Case Studies Involving Structural Failures -- A. Problems with Loads and Design -- B. Problems with Design, Inspection, Maintenance, and Repair -- III. Summary -- References -- Problems -- Chapter 2 Elements of Elastic Deformation -- I. Introduction -- II. Stress -- A. Definitions -- B. Decomposition of a Stress Tensor -- C. Principal Stresses -- D. Mohr Circles -- III. Strain -- IV. Elastic Constitutive Relationships -- A. Assumptions -- B. The Elastic Constants -- C. Elastic Stress-Strain Relations -- D. Strain Energy Density -- E. Relationship between Elastic Constants -- V. State of Stress Ahead of a Notch -- VI. Summary -- References -- Appendix 2-1: Mohr Circle Equations for a Plane Problem -- Appendix 2-2: Three-Dimensional Stress Analysis -- I. Principal Stresses and Stress Invariants -- II. Maximum and Octahedral Shear Stresses -- III. Stress Deviator Tensor -- Appendix 2-3: Stress Formulas Under Simple Loading Conditions -- I. Bending of a Beam -- II. Torsion of a Circular Shaft -- III. Thin-Walled Cylinder -- Problems -- Chapter 3 Elements of Plastic Deformation -- I. Introduction -- II. Theoretical Shear Strength -- III. Dislocations -- IV. Yield Criteria for Multiaxial Stress -- A. Distortional (Shear) Energy Criterion -- B. Maximum Shear Stress Criterion -- V. State of Stress in the Plastic Zone Ahead of a Notch in Plane-Strain Deformation -- VI. Summary -- For Further Reading -- Appendix 3-1: The von Mises Yield Criterion -- Problems -- Chapter 4 Elements of Fracture Mechanics -- I. Introduction -- II. Griffith's Analysis of the Critical Stress for Brittle Fracture -- III. Alternative Derivation of the Griffith Equation -- IV. Orowan-Irwin Modification of the Griffith Equation -- V. Stress Intensity Factors. 327 $aVI. The Three Loading Modes -- VII. Determination of the Plastic Zone Size -- VIII. Effect of Thickness on Fracture Toughness -- IX. The R-Curve -- X. Short Crack Limitation -- XI. Case Studies -- A. Failure of Cannon Barrels -- B. Failure of a Post-tensioned Steel Bar -- XII. The Plane-Strain Crack Arrest Fracture Toughness, KIa, of Ferritic Steels -- XIII. Elastic-plastic Fracture Mechanics -- XIV. Failure Assessment Diagrams -- XV. Summary -- References -- Problems -- Chapter 5 Alloys and Coatings -- IIntroduction -- II. Alloying Elements -- III. Periodic Table -- IV. Phase Diagrams -- A. Steels -- B. Aluminum Alloys -- C. Titanium Alloys -- D. Nickel-Base Superalloys -- V. Coatings -- VI. Summary -- References -- Problems -- Chapter 6 Examination and Reporting Procedures -- I Introduction -- II. Tools for Examinations in the Field -- III. Preparation of Fracture Surfaces for Examination -- IV. Visual Examination -- V. Case Study: Failure of a Steering Column Component -- VI. Optical Examination -- VII. Case Study: Failure of a Helicopter Tail Rotor -- VIII. The Transmission Electron Microscope (TEM) -- IX. The Scanning Electron Microscope (SEM) -- X. Replicas -- XI. Spectrographic and Other Types of Chemical Analysis -- XII. Case Study: Failure of a Zinc Die Casting -- XIII. Specialized Analytical Techniques -- XIV. Stress Measurement by X-Rays -- XV. Case Study: Residual Stress in a Train Wheel -- XVI The Technical Report -- A. An Outline for Preparing the Technical Report -- XVII. Record Keeping and Testimony -- A. Maintain a "Chain of Custody" -- B. Photos and Other Records -- C. Examination in Your Laboratory (or Service Laboratory) -- D. Storage -- E. Depositions -- F. Pretrial Preparation -- H. Cross-Examination -- I. A Final Point -- XVIII. Summary -- References -- Problem -- Chapter 7 Brittle and Ductile Fractures -- I Introduction. 327 $aII. Brittle Fracture -- III. Some Examples of Brittle Fracture in Steel -- IV. Ductile-Brittle Behavior of Steel -- A. The Charpy Test -- V. Case Study: The Nuclear Pressure Vessel Design Code -- A. Prevention of Brittle Failure (4) -- VI. Case Study: Examination of Samples from the Royal Mail Ship (RMS) Titanic -- A. Chemistry -- B. Tensile Properties -- C. Microstructure -- D. Fractography -- E. Corrosion -- F. Rivets -- VII. Ductile Fracture -- VIII. Ductile Tensile Failure, Necking -- A. Condition for Necking of a Bar -- B. Strain Localization -- C. Axisymmetric Stress in Necking -- D. Necking in a Thin Strip Under Tension -- IX. Fractographic Features Associated with Ductile Rupture -- X. Failure in Torsion -- XI. Case Study: Failure of a Helicopter Bolt -- XII. Summary -- References -- Problems -- Chapter 8 Thermal and Residual Stresses -- I Introduction -- II. Thermal Stresses, Thermal Strain, and Thermal Shock -- A. Thermal Stresses -- B. Thermal-Mechanical Cyclic Strains -- C. Thermal Shock -- III. Residual Stresses Caused by Nonuniform Plastic Deformation -- A. An Example of Mechanically Induced Residual Stresses: Springback After Bending into the Plastic Range (2) -- B. Case Study: Shaft of a Golf Club -- IV. Residual Stresses Due to Quenching -- A. Quench Cracking -- V. Residual Stress Toughening -- VI. Residual Stresses Resulting from Carburizing, Nitriding, and Induction Hardening -- A. Carburizing -- B. Nitriding -- C. Induction Hardening -- VII. Residual Stresses Developed in Welding -- VIII. Measurement of Residual Stresses -- IX. Summary -- References -- Appendix 8-1: Case Study of a Fracture Due to Thermal Stress -- Problems -- Chapter 9 Creep -- I Introduction -- II. Background -- III. Characteristics of Creep -- IV. Creep Parameters -- V. Creep Fracture Mechanisms -- VI. Fracture Mechanism Maps -- VII. Case Studies. 327 $aA. Failure at Longitudinally Welded Pipe (8) -- B. Failure of a Heat Exchanger Tube -- C. An Ovalized Tube (9) -- D. Failures in Fossil-Fired Boilers (2) -- VIII. Residual Life Assessment -- A. Microstructurally Based Approach -- B. Accelerated Creep Testing -- IX. Stress Relaxation -- X. Elastic Follow-up -- XI. Summary -- References -- Problems -- Chapter 10 Fatigue -- I Introduction -- II. Background -- III. Design Considerations -- IV. Mechanisms of Fatigue -- A. The Initiation of Fatigue Cracks -- B. Fatigue Crack Closure -- C. The Propagation of Fatigue Cracks -- V. Factors Affecting Fatigue Crack Initiation -- A. Surface Roughness -- B. Carburization -- C. Shot Peening -- D. Environments -- VI. Factors Affecting Fatigue Crack Growth -- VII. Analysis of the Rate of Fatigue Crack Propagation -- A. Crack Tip Stress Approach -- B. A Fatigue Crack Growth Relationship -- VIII. Fatigue Failure Analysis -- A. Macroscopic -- B. Microscopic -- IX. Case Studies -- A. Hydroelectric Generator Power Failure (62) -- B. Fatigue of a B747 Fuse Pin (63) -- C. Aircraft Gas Turbines -- D. Coil Springs (69) -- X. Thermal-Mechanical Fatigue -- XI. Cavitation -- XII. Composite Materials -- XIII. Summary -- References -- For Further Reading -- Problems -- Chapter 11 Statistical Distributions -- I. Introduction -- II. Distribution Functions -- III. The Normal Distribution -- IV. Statistics of Fatigue -- Statistical Distributions -- V. The Weibull Distribution -- A. Application to Yield Strength -- B. Application to Fatigue Life -- VI. The Gumbel Distribution -- A. Maximum Size of the Inclusion -- B. Influence of Inclusion Size on Fatigue Strength -- C. Maximum Depth of the Corrosion Pit -- VII. The Staircase Method -- VIII. Summary -- References -- Appendix 11-1: Method of Linear Least Squares (C. F. Gauss, 1794) -- Problems -- Chapter 12 Defects -- I. Introduction. 327 $aII. Weld Defects -- A. General Characteristics -- B. Effect of the Cooling Rate -- C. Laminar Tearing -- III. Case Study: Welding Defect -- A. The Alexander Kielland Accident, March 27,1980 (4) -- B. Accident Investigation -- C. Fracture in Bracing Member D-6 -- D. Conclusions -- IV. Casting Defects -- V. Case Study: Corner Cracking during Continuous Casting -- VI. Forming Defects -- VII. Case Studies: Forging Defects -- A. F-111 (7) -- B. Jet Engine Components -- VIII. Case Study: Counterfeit Part -- IX. The Use of the Wrong Alloys -- Errors in Heat Treatment, etc. -- X. Summary -- References -- Problems -- Chapter 13 Environmental Effects -- I. Introduction -- II. Definitions -- III. Fundamentals of Corrosion Processes -- IV. Environmentally Assisted Cracking Processes -- V. Case Studies -- A. Spring Failures -- B. Failure of a Ladder Rung -- VI. Cracking in Oil and Gas Pipelines -- VII. Crack Arrestors and Pipeline Reinforcement -- VIII. Plating Problems -- IX. Case Studies -- A. Welding Electrodes (10) -- B. Stack Corrosion (11) -- C. Backing Rings -- X. Pitting Corrosion of Household Copper Tubing -- XI. Problems with Hydrogen at Elevated Temperatures -- XII. Hot Corrosion (Sulfidation) -- XIII. Summary -- References -- Problems -- Chapter 14 Flaw Detection -- I. Introduction -- II. Inspectability -- III. Visual Examination (VE) -- IV. Penetrant Testing (PT) -- V. Case Study: Sioux City DC-10 Aircraft -- A. Summary -- B. Factual Information -- C. Stage 1 Fan Disk Historical Data -- D. Examination of the No. 2 Engine Stage 1 Fan Disk -- E. Fan Disk Manufacturing Process and Hard Alpha Material -- F. Initiation and Propagation of the Fatigue Crack -- VI. Case Study: MD-88 Engine Failure -- VII. Magnetic Particle Testing (MT) -- VIII. Case Study: Failure of an Aircraft Crankshaft -- IX. Eddy Current Testing (ET) -- X. Case Study: Aloha Airlines. 327 $aXI. Ultrasonic Testing (UT). 330 8 $aOne of the only texts available to cover not only how failure occurs but also examine methods developed to expose the reasons for failure, Metal Failures has long been considered the most definitive and authoritative resources in metallurgical failure analysis. Now in a completely revised edition, this Second Edition features updates of all chapters plus new coverage of elastic behavior and plastic deformation, localized necking, the phenomenological aspects of fatigue, fatigue crack propagation, alloys and coatings, tensors and tensor notations, and much more. 606 $aMetals$xFracture 606 $aFracture mechanics 615 0$aMetals$xFracture. 615 0$aFracture mechanics. 676 $a620.1/66 700 $aMcEvily$b A. J$019151 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815260003321 996 $aMetal failures$91228781 997 $aUNINA