LEADER 04445nam 2200697 a 450 001 9910815238903321 005 20200520144314.0 010 $a1-118-60104-1 010 $a1-118-60114-9 010 $a1-118-60111-4 010 $a1-299-18753-6 035 $a(CKB)2550000001005888 035 $a(EBL)1124704 035 $a(SSID)ssj0000832003 035 $a(PQKBManifestationID)11442617 035 $a(PQKBTitleCode)TC0000832003 035 $a(PQKBWorkID)10882213 035 $a(PQKB)11586982 035 $a(Au-PeEL)EBL1124704 035 $a(CaPaEBR)ebr10660607 035 $a(CaONFJC)MIL450003 035 $a(CaSebORM)9781118601143 035 $a(MiAaPQ)EBC1124704 035 $a(OCoLC)828672185 035 $a(EXLCZ)992550000001005888 100 $a20110316d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aSilicon technologies$b[electronic resource] $eion implantation and thermal treatment /$fedited by Annie Baudrant 205 $a1st edition 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (357 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-231-3 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Silicon and Silicon Carbide Oxidation; 1.1. Introduction; 1.2. Overview of the various oxidation techniques; 1.2.1. General information; 1.2.2. Most frequently used methods in the semiconductor industry; 1.2.3. Other methods; 1.3. Some physical properties of silica; 1.3.1. The silica structure; 1.3.2. Three useful parameters of silica; 1.3.3. Transport properties in silica; 1.4. Equations of atomic transport during oxidation; 1.4.1. Transport equations in the general case 327 $a1.5.5. Experimental results and conclusions on the transport mechanisms during the anodic oxidation of silicon1.5.6. Important experimental results from dry SiC thermal oxidation; 1.6. Transport equations in the case of thermal oxidation; 1.6.1. General information on flux and on growth kinetics; 1.6.2. Flux calculation for neutral mobile species; 1.6.3. Flux calculation for ion mobile species; 1.7. Deal and Grove theory of thermal oxidation; 1.7.1. Flux calculation; 1.7.2. Growth kinetics equations; 1.7.3. Remarks on the fluctuations of the oxidation constants kP and kL 327 $a1.7.4. Determination of the oxidation parameters from experimental results1.7.5. Confrontation of the Deal and Grove theory with experimental results; 1.7.6. Conclusions on the Deal and Grove theory; 1.8. Theory of thermal oxidation under water vapor of silicon; 1.8.1. Concentration profiles expected for H2O; 1.8.2. Concentration profiles expected for the OH groups; 1.8.3. Concentration profiles expected for H2; 1.8.4. Concentration profiles expected for H; 1.8.5. Comparison of the expected and the experimental profiles; 1.8.6. Wolters theory 327 $a1.9. Kinetics of growth in O2 for oxide films < 30 nm1.9.1. Introduction; 1.9.2. Oxidation models of thin films; 1.9.3. Case of ultra-thin films (< 5 nm); 1.9.4. On line simulator; 1.9.5. Kinetics and models of SiC oxidation; 1.10. Fluctuations of the oxidation constants under experimental conditions; 1.10.1. Role of the pressure; 1.10.2. Role of the temperature; 1.10.3. Role of the crystal direction; 1.10.4. Role of doping; 1.11. Conclusion; 1.12. Bibliography; Chapter 2. Ion Implantation; 2.1. Introduction; 2.2. Ion implanters; 2.2.1. General description; 2.2.2. Ion sources 327 $a2.2.3. Mass analysis and beam optics 330 $aThe main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion. 410 0$aISTE 606 $aSemiconductor doping 606 $aIon implantation 606 $aSemiconductors$xHeat treatment 615 0$aSemiconductor doping. 615 0$aIon implantation. 615 0$aSemiconductors$xHeat treatment. 676 $a621.3815/2 701 $aBaudrant$b Annie$01717590 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815238903321 996 $aSilicon technologies$94113942 997 $aUNINA