LEADER 05343nam 2200649Ia 450 001 9910814882903321 005 20230721021953.0 010 $a1-84816-255-3 035 $a(CKB)1000000000767654 035 $a(EBL)1193722 035 $a(SSID)ssj0000519602 035 $a(PQKBManifestationID)12185051 035 $a(PQKBTitleCode)TC0000519602 035 $a(PQKBWorkID)10508615 035 $a(PQKB)11258377 035 $a(MiAaPQ)EBC1193722 035 $a(WSP)00002031 035 $a(Au-PeEL)EBL1193722 035 $a(CaPaEBR)ebr10688173 035 $a(CaONFJC)MIL498384 035 $a(OCoLC)696629755 035 $a(EXLCZ)991000000000767654 100 $a20080703d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aQuantum aspects of life$b[electronic resource] /$feditors, Derek Abbott, Paul C.W. Davies, Arun K. Pati ; foreword by Roger Penrose 210 $aLondon $cImperial College Press ;$aHackensack, NJ ;$aLondon $cDistributed by World Scientific$dc2008 215 $a1 online resource (468 p.) 300 $aDescription based upon print version of record. 311 $a1-84816-267-7 311 $a1-84816-253-7 320 $aIncludes bibliographical references and index. 327 $aPreface; Foreword; Acknowledgments; Contents; Part 1: Emergence and Complexity; 1. A Quantum Origin of Life? Paul C. W. Davies; 1.1. Chemistry and Information; 1.2. Q-life; 1.3. The Problemof Decoherence; 1.4. Life as the "Solution" of a Quantum Search Algorithm; 1.5. Quantum Choreography; Acknowledgements; References; 2. Quantum Mechanics and Emergence Seth Lloyd; 2.1. Bits; 2.2. Coin Flips; 2.3. The Computational Universe; 2.4. Generating Complexity; 2.5. A Human Perspective; 2.6. A QuantumPerspective; References; Part 2: Quantum Mechanisms in Biology 327 $a3. Quantum Coherence and the Search for the First Replicator Jim Al-Khalili and Johnjoe McFadden3.1. When did Life Start?; 3.2. Where did Life Start?; 3.3. Where did the Precursors Come From?; 3.4. What was the Nature of the First Self-replicator?; 3.5. The RNAWorld Hypothesis; 3.6. A Quantum Mechanical Origin of Life; 3.6.1. The dynamic combinatorial library; 3.6.2. The two-potential model; 3.6.3. Decoherence; 3.6.4. Replication as measurement; 3.6.5. Avoiding decoherence; 3.7. Summary; References 327 $a4. Ultrafast Quantum Dynamics in Photosynthesis Alexandra Olaya Castro, Francesca Fassioli Olsen, Chiu Fan Lee, and Neil F. Johnson4.1. Introduction; 4.2. A Coherent Photosynthetic Unit (CPSU); 4.3. Toy Model: Interacting Qubits with a Spin-star Configuration; 4.4. A More Detailed Model: Photosynthetic Unit of Purple Bacteria; 4.5. Experimental Considerations; 4.6. Outlook; References; 5. Modelling Quantum Decoherence in Biomolecules Jacques Bothma, Joel Gilmore, and Ross H. McKenzie; 5.1. Introduction; 5.2. Time and Energy Scales; 5.3. Models for Quantum Baths and Decoherence 327 $a5.3.1. The spin-bosonmodel5.3.1.1. Independent boson model; 5.3.2. Caldeira-Leggett Hamiltonian; 5.3.3. The spectral density; 5.4. The Spectral Density for the Different Continuum Models of the Environment; 5.5. Obtaining the Spectral Density from Experimental Data; 5.6. Analytical Solution for the Time Evolution of the Density Matrix; 5.7. Nuclear Quantum Tunnelling in Enzymes and the Crossover Temperature; 5.8. Summary; References; Part 3: The Biological Evidence; 6. Molecular Evolution: A Role for Quantum Mechanics in the Dynamics of Molecular Machines that Read and Write DNA Anita Goel 327 $a6.1. Introduction6.2. Background; 6.3. Approach; 6.3.1. The information processing power of a molecularmotor; 6.3.2. Estimation of decoherence times of the motor-DNA complex; 6.3.3. Implications and discussion; References; 7. Memory Depends on the Cytoskeleton, but is it Quantum? Andreas Mershin and Dimitri V. Nanopoulos; 7.1. Introduction; 7.2. Motivation behind Connecting Quantum Physics to the Brain; 7.3. Three Scales of Testing for Quantum Phenomena in Consciousness; 7.4. Testing the QCI at the 10 nm-10 ?m Scale 327 $a7.5. Testing for Quantum Effects in Biological Matter Amplified from the 0.1 nm to the 10 nm Scale and Beyond 330 $aThis book presents the hotly debated question of whether quantum mechanics plays a non-trivial role in biology. In a timely way, it sets out a distinct quantum biology agenda. The burgeoning fields of nanotechnology, biotechnology, quantum technology, and quantum information processing are now strongly converging. The acronym BINS, for Bio-Info-Nano-Systems, has been coined to describe the synergetic interface of these several disciplines. The living cell is an information replicating and processing system that is replete with naturally-evolved nanomachines, which at some level require a quant 606 $aQuantum biochemistry 606 $aLife$zOrigin 615 0$aQuantum biochemistry. 615 0$aLife 676 $a576.8/3 701 $aAbbott$b Derek$f1960-$01676253 701 $aDavies$b P. C. W$044918 701 $aPati$b Arun K$01676254 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910814882903321 996 $aQuantum aspects of life$94042337 997 $aUNINA