LEADER 03546nam 2200613Ia 450 001 9910814879203321 005 20240313222707.0 010 $a981-270-975-4 035 $a(CKB)1000000000767000 035 $a(EBL)1193752 035 $a(SSID)ssj0000519962 035 $a(PQKBManifestationID)12162072 035 $a(PQKBTitleCode)TC0000519962 035 $a(PQKBWorkID)10514021 035 $a(PQKB)11637144 035 $a(MiAaPQ)EBC1193752 035 $a(WSP)00001413 035 $a(Au-PeEL)EBL1193752 035 $a(CaPaEBR)ebr10688066 035 $a(CaONFJC)MIL498408 035 $a(OCoLC)785724092 035 $a(EXLCZ)991000000000767000 100 $a20090219d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aStructural colors in the realm of nature /$fShuichi Kinoshita 205 $a1st ed. 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (368 p.) 300 $aDescription based upon print version of record. 311 $a981-270-783-2 320 $aIncludes bibliographical references (p. 265-285) and indexes. 327 $a1. Introduction. 1.1. What is structural color? 1.2. Historical overview -- 2. Fundamentals of structural coloration. 2.1. Fundamentals of properties of light. 2.2. Thin-film interference. 2.3. Multilayer interference. 2.4. Diffraction of light and diffraction grating. 2.5. Photonic crystals. 2.6. Light scattering -- 3. Butterflies and moths. 3.1. General descriptions. 3.2. Morpho butterflies. 3.3. Overview of the structural coloration in butterflies and moths -- 4. Beetles and other insects. 4.1. Overview. 4.2. Beetles. 4.3. Damselflies and dragonflies. 4.4. Shield bugs and cicadas. 4.5. Other insects -- 5. Birds. 5.1. Overview. 5.2. Peacocks, pheasants, and ducks. 5.3. Hummingbirds. 5.4. Trogons. 5.5. Pigeons. 5.6. Non-iridescent colorations - kingfishers, parakeets, cotingas, and jays -- 6. Fish. 6.1. General description. 6.2. Static iridophores. 6.3. Motile iridophores. 6.4. Motile iridophores -- 7. Plants -- 8. Miscellaneous. 8.1. Shells. 8.2. Spiders. 8.3. Marine animals -- 9. Mathematical background. 9.1. Calculations of multilayer reflection. 9.2. Model for Morpho butterfly scale. 9.3. Antireflection effect. 9.4. Average refractive index. 9.5. Cholesteric liquid crystal. 330 $aStructural colorations originate from self-organized microstructures, which interact with light in a complex way to produce brilliant colors seen everywhere in nature. Research in this field is extremely new and has been rapidly growing in the last 10 years, because the elaborate structures created in nature can now be fabricated through various types of nanotechnologies. Indeed, a fundamental book covering this field from biological, physical, and engineering viewpoints has long been expected.Coloring in nature comes mostly from inherent colors of materials, though it sometimes has a purely p 606 $aAnimals$xColor 606 $aStructural colors 606 $aAnimal pigments 606 $aPlants$xColor 615 0$aAnimals$xColor. 615 0$aStructural colors. 615 0$aAnimal pigments. 615 0$aPlants$xColor. 676 $a591.472 700 $aKinoshita$b Shuichi$f1949-$01638431 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910814879203321 996 $aStructural colors in the realm of nature$93980806 997 $aUNINA