LEADER 02305nam 2200493 450 001 9910814694303321 005 20200520144314.0 010 $a1-118-57363-3 035 $a(CKB)24989749000041 035 $a(NjHacI)9924989749000041 035 $a(Au-PeEL)EBL1691883 035 $a(CaPaEBR)ebr10874726 035 $a(CaONFJC)MIL611516 035 $a(OCoLC)864808991 035 $a(MiAaPQ)EBC1691883 035 $a(EXLCZ)9924989749000041 100 $a20140605h20142014 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aApplied missing data analysis in the health sciences /$fXiao-Hua Zhou [and three others] 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons,$d2014. 210 4$d2014 215 $a1 online resource (256 pages) 225 1 $aWiley Series in Statistics in Practice 320 $aIncludes bibliographical references and index. 327 $aMissing data concepts and motivating examples -- Overview of methods for dealing with missing data -- Design considerations in the presence of missing data -- Crosssectional data methods -- Longitudinal data methods -- Survival analysis under ignorable missingness -- Nonignorable missingness. 330 $aA modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various modern statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference methods and the field of diagnostic medicine. 410 0$aStatistics in practice. 606 $aMedical sciences$xStudy and teaching 606 $aMedicine$xResearch 615 0$aMedical sciences$xStudy and teaching. 615 0$aMedicine$xResearch. 676 $a610.711 702 $aZhou$b Xiao-Hua 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910814694303321 996 $aApplied missing data analysis in the health sciences$93913673 997 $aUNINA