LEADER 02595nam 2200589 a 450 001 9910814561003321 005 20240516082915.0 010 $a1-282-76028-9 010 $a9786612760280 010 $a981-281-417-5 035 $a(CKB)2490000000001891 035 $a(EBL)731103 035 $a(OCoLC)670429445 035 $a(SSID)ssj0000411378 035 $a(PQKBManifestationID)12144841 035 $a(PQKBTitleCode)TC0000411378 035 $a(PQKBWorkID)10355870 035 $a(PQKB)10248696 035 $a(MiAaPQ)EBC731103 035 $a(WSP)00006835 035 $a(Au-PeEL)EBL731103 035 $a(CaPaEBR)ebr10422548 035 $a(CaONFJC)MIL276028 035 $a(EXLCZ)992490000000001891 100 $a20100803d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAffine Bernstein problems and Monge-Ampe?re equations /$fAn-Min Li ... [et al.] 205 $a1st ed. 210 $aSingapore ;$aHackensack, N.J. $cWorld Scientific$dc2010 215 $a1 online resource (192 p.) 300 $aDescription based upon print version of record. 311 $a981-281-416-7 320 $aIncludes bibliographical references (p. 173-177) and index. 327 $aPreface; Contents; 1. Basic Tools; 2. Local Equiaffine Hypersurfaces; 3. Local Relative Hypersurfaces; 4. The Theorem of Jorgens-Calabi-Pogorelov; 5. Affine Maximal Hypersurfaces; 6. Hypersurfaces with Constant Affine Mean Curvature; Bibliography; Index 330 $aIn this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It is well-known that many geometric problems in analytic formulation lead to important classes of PDEs. The focus of this monograph is on variational problems and higher order PDEs for affine hypersurfaces. Affine maximal hypersurfaces are extremals of the interior variation of the affinely invariant volume. The corresponding Euler-Lagrange equation is a highly complicated nonlinear fourth order PDE. In recent years, the global study of such fourth order PDEs has received con 606 $aAffine differential geometry 606 $aMonge-Ampe?re equations 615 0$aAffine differential geometry. 615 0$aMonge-Ampe?re equations. 676 $a516.36 701 $aLi$b An-Min$f1946-$01669101 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910814561003321 996 $aAffine Bernstein problems and Monge-Ampe?re equations$94030162 997 $aUNINA