LEADER 04262nam 22006974a 450 001 9910814121503321 005 20200520144314.0 010 $a1-107-12389-5 010 $a0-521-18386-3 010 $a0-511-17475-6 010 $a0-511-15477-1 010 $a1-280-43347-7 010 $a0-511-54664-5 010 $a9786610433476 010 $a0-511-30238-X 010 $a0-511-04405-4 035 $a(CKB)111056485623538 035 $a(EBL)202165 035 $a(OCoLC)559267887 035 $a(SSID)ssj0000137620 035 $a(PQKBManifestationID)11129813 035 $a(PQKBTitleCode)TC0000137620 035 $a(PQKBWorkID)10096025 035 $a(PQKB)10962842 035 $a(UkCbUP)CR9780511546648 035 $a(Au-PeEL)EBL202165 035 $a(CaPaEBR)ebr10006822 035 $a(CaONFJC)MIL43347 035 $a(MiAaPQ)EBC202165 035 $a(PPN)261353675 035 $a(EXLCZ)99111056485623538 100 $a20010305d2001 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDeterministic observation theory and applications /$fJean-Paul Gauthier, Ivan Kupka 205 $a1st ed. 210 $aCambridge ;$aNew York $cCambridge University Press$d2001 215 $a1 online resource (x, 226 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-80593-7 311 $a0-511-01699-9 320 $aIncludes bibliographical references (p. 217-220) and index. 327 $tSystems under Consideration --$tWhat Is Observability? --$tThe New Observability Theory Versus the Old Ones --$tObservability and Observers --$tObservability Concepts --$tInfinitesimal and Uniform Infinitesimal Observability --$tThe Canonical Flag of Distributions --$tThe Phase-Variable Representation --$tDifferential Observability and Strong Differential Observability --$tThe Trivial Foliation --$tAppendix: Weak Controllability --$tThe Case d[subscript y] [less than or equal] d[subscript u] --$tRelation Between Observability and Infinitesimal Observability --$tNormal Form for a Uniform Canonical Flag --$tCharacterization of Uniform Infinitesimal Observability --$tComplements --$tProof of Theorem 3.2 --$tThe Case d[subscript y]] d[subscript u] --$tDefinitions and Notations --$tStatement of Our Differential Observability Results --$tProof of the Observability Theorems --$tEquivalence between Observability and Observability for Smooth Inputs --$tThe Approximation Theorem --$tComplements --$tSingular State-Output Mappings --$tAssumptions and Definitions --$tThe Ascending Chain Property --$tThe Key Lemma --$tThe ACP(N) in the Controlled Case --$tGlobalization --$tThe Controllable Case --$tObservers: The High-Gain Construction --$tDefinition of Observer Systems and Comments --$tThe High-Gain Construction --$tDynamic Output Stabilization and Applications --$tDynamic Output Stabilization --$tThe Case of a Uniform Canonical Flag --$tThe General Case of a Phase-Variable Representation --$tComplements --$tApplications --$tBinary Distillation Columns --$tPolymerization Reactors. 330 $aThis 2001 book presents a general theory as well as a constructive methodology to solve 'observation problems', that is, reconstructing the full information about a dynamical process on the basis of partial observed data. A general methodology to control processes on the basis of the observations is also developed. Illustrative but also practical applications in the chemical and petroleum industries are shown. This book is intended for use by scientists in the areas of automatic control, mathematics, chemical engineering and physics. 606 $aObservers (Control theory) 606 $aMissing observations (Statistics) 615 0$aObservers (Control theory) 615 0$aMissing observations (Statistics) 676 $a003 700 $aGauthier$b Jean-Paul$0767707 701 $aKupka$b Ivan$f1937-$0771657 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910814121503321 996 $aDeterministic observation theory and applications$91574828 997 $aUNINA