LEADER 04731oam 2200589 450 001 9910813940403321 005 20190911112728.0 010 $a1-299-46224-3 010 $a981-4390-36-4 035 $a(OCoLC)846972347 035 $a(MiFhGG)GVRL8RJJ 035 $a(EXLCZ)992550000001019224 100 $a20130911h20132013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 00$aBiomimetic robotic artificial muscles /$fKwang Jin Kim, University of Nevada, Las Vegas, USA, University of Nevada, Reno, USA, Xiaobo Tan, Michigan State University, USA, Hyouk Ryeol Choi, Sungkyunkwan University, S. Korea, David Pugal, University of Nevada, Reno, USA 210 $a[Hackensack] N.J. $cWorld Scientific$dc2013 210 1$aNew Jersey :$cWorld Scientific,$d[2013] 210 4$d?2013 215 $a1 online resource (xiii, 285 pages) $cillustrations (some color) 225 0 $aGale eBooks 300 $aDescription based upon print version of record. 311 $a981-4390-35-6 320 $aIncludes bibliographical references. 327 $aPreface; Contents; 1. Introduction; 2. Physical Principles of Ionic Polymer-Metal Composites; 2.1 Introduction; 2.2 Manufacturing IPMC Materials; 2.3 IPMC Electrode Selection and Associated Electrode Models; 2.3.1 Palladium-buffered Pt electrodes; 2.3.1.1 Fabrication procedure; 2.3.1.2 Electrical and mechanical characteristics; 2.3.2 Electrode effect on mechanical and thermal behavior; 2.3.2.1 Results; 2.3.3 Electrode modeling; 2.3.3.1 Estimation of electrical properties; 2.3.3.2 Experiments for electrode control; 2.4 Actuation Behavior and Mechanism of IPMCs; 2.4.1 Back relaxation phenomenon 327 $a2.4.2 Electrochemical study of the IPMCs2.4.3 Low-temperature characteristics of IPMCs; 2.5 More Complex Configurations of IPMC Actuators; 2.5.1 Equivalent modeling of IPMCs based on beam theories; 2.5.2 3D full-scale physical model of patterned IPMCs; 2.5.3 IPMCs as linear actuators; 2.5.4 IPMC-based actuators in multi-layer configurations; 3. New IPMC Materials and Mechanisms; 3.1 Multi-Field Responsive IPMCs; 3.2 IPMCs Loaded with Multiwalled Carbon Nanotubes; 3.3 IPMCs Incorporating ZnO Thin Film; 3.4 A Self-oscillating IPMC; 3.4.1 Self-oscillating actuation of IPMC 327 $a3.4.1.1 Electrochemical oscillations on Pt electrode3.4.1.2 Electrochemical self-oscillating actuation of IPMCs; 3.4.2 Modeling the oscillating actuation; 3.4.2.1 Finite-element bending model of IPMC; 3.4.2.2 Modeling self-oscillations; 3.4.2.3 Summary; 4. A Systems Perspective on Modeling of Ionic Polymer- Metal Composites; 4.1 Introduction; 4.2 A Physics-based, Control-oriented Model; 4.2.1 Dynamics-governing PDEs; 4.2.2 Impedance and actuation models; 4.2.2.1 Impedance model; 4.2.2.2 Actuation model and its reduction; 4.2.3 Experimental model validation 327 $a5.3.2 Model scalability5.4 Robust Adaptive Control of Conjugated Polymer Actuators; 5.4.1 Design of robust adaptive controller; 5.4.1.1 Model reduction; 5.4.1.2 Robust self-tuning regulator; 5.4.2 Experimental results; 5.5 Redox Level-dependent Admittance Model; 5.5.1 Model development; 5.5.2 Experimental model validation; 5.6 Nonlinear Elasticity-based Modeling of Large Bending Deformation; 5.6.1 Nonlinear mechanical model; 5.6.2 Experimental model validation; 5.7 Nonlinear Mechanics-Motivated Torsional Actuator; 5.7.1 Nonlinear mechanical model; 5.7.2 Actuator fabrication 327 $a5.7.3 Experimental results 330 $aBiomimetic Robotic Artificial Muscles presents a comprehensive up-to-date overview of several types of electroactive materials with a view of using them as biomimetic artificial muscles. The purpose of the book is to provide a focused, in-depth, yet self-contained treatment of recent advances made in several promising EAP materials. In particular, ionic polymer-metal composites, conjugated polymers, and dielectric elastomers are considered. Manufacturing, physical characterization, modeling, and control of the materials are presented. Namely, the book adopts a systems perspective to integrate 606 $aBiomimetics 606 $aRobots$xKinematics 606 $aBiomimetic materials 606 $aMuscles 615 0$aBiomimetics. 615 0$aRobots$xKinematics. 615 0$aBiomimetic materials. 615 0$aMuscles. 676 $a530.4/1 702 $aKim$b Kwang Jin$f1949- 702 $aTan$b Xiaobo 702 $aChoi$b Hyouk Ryeol 702 $aPugal$b David 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910813940403321 996 $aBiomimetic robotic artificial muscles$94096592 997 $aUNINA