LEADER 03922nam 22007214a 450 001 9910813929303321 005 20200520144314.0 010 $a1-107-11464-0 010 $a1-280-42934-8 010 $a0-511-17568-X 010 $a0-511-03994-8 010 $a0-511-15618-9 010 $a0-511-32911-3 010 $a0-511-75576-7 010 $a0-511-05026-7 035 $a(CKB)1000000000004181 035 $a(EBL)201644 035 $a(OCoLC)437063137 035 $a(SSID)ssj0000182534 035 $a(PQKBManifestationID)11156498 035 $a(PQKBTitleCode)TC0000182534 035 $a(PQKBWorkID)10187579 035 $a(PQKB)10974664 035 $a(UkCbUP)CR9780511755767 035 $a(Au-PeEL)EBL201644 035 $a(CaPaEBR)ebr10005020 035 $a(CaONFJC)MIL42934 035 $a(MiAaPQ)EBC201644 035 $a(PPN)261305107 035 $a(EXLCZ)991000000000004181 100 $a19990329d2000 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn introduction to econophysics $ecorrelations and complexity in finance /$fRosario N. Mantegna, H. Eugene Stanley 205 $a1st ed. 210 $aCambridge, UK ;$aNew York $cCambridge University Press$d2000 215 $a1 online resource (ix, 148 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-03987-8 311 $a0-521-62008-2 320 $aIncludes bibliographical references (p. 137-144) and index. 327 $aCover; Half-title; Title; Copyright; Contents; Preface; Dedication; 1 Introduction; 2 Efficient market hypothesis; 3 Random walk; 4 Le?vy stochastic processes and limit theorems; 5 Scales in financial data; 6 Stationarity and time correlation; 7 Time correlation in financial time series; 8 Stochastic models of price dynamics; 9 Scaling and its breakdown; 10 ARCH and GARCH processes; 11 Financial markets and turbulence; 12 Correlation and anticorrelation between stocks; 13 Taxonomy of a stock portfolio; 14 Options in idealized markets; 15 Options in real markets; Appendix A: Notation guide 327 $aAppendix B: MartingalesReferences; Index 330 $aThis book concerns the use of concepts from statistical physics in the description of financial systems. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully developed turbulent fluids. These concepts are then applied to financial time series. The authors also present a stochastic model that displays several of the statistical properties observed in empirical data. Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an understanding of the global behaviour of economic systems without first having to work out a detailed microscopic description of the system. Physicists will find the application of statistical physics concepts to economic systems interesting. Economists and workers in the financial world will find useful the presentation of empirical analysis methods and well-formulated theoretical tools that might help describe systems composed of a huge number of interacting subsystems. 606 $aFinance$xStatistical methods 606 $aFinance$xMathematical models 606 $aStatistical physics 615 0$aFinance$xStatistical methods. 615 0$aFinance$xMathematical models. 615 0$aStatistical physics. 676 $a332/.01/5195 700 $aMantegna$b Rosario N$g(Rosario Nunzio),$f1960-$066970 701 $aStanley$b H. Eugene$g(Harry Eugene),$f1941-$094081 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813929303321 996 $aAn introduction to econophysics$94203676 997 $aUNINA