LEADER 05653nam 2200721 450 001 9910813882603321 005 20200520144314.0 010 $a3-527-65416-X 010 $a3-527-65414-3 010 $a3-527-65417-8 035 $a(CKB)2550000001165607 035 $a(EBL)1568427 035 $a(OCoLC)864382675 035 $a(SSID)ssj0001160037 035 $a(PQKBManifestationID)11767830 035 $a(PQKBTitleCode)TC0001160037 035 $a(PQKBWorkID)11117865 035 $a(PQKB)10293979 035 $a(MiAaPQ)EBC1568427 035 $a(Au-PeEL)EBL1568427 035 $a(CaPaEBR)ebr10809690 035 $a(CaONFJC)MIL546875 035 $a(PPN)188266623 035 $a(EXLCZ)992550000001165607 100 $a20131209d2014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHigh temperature performance of polymer composites /$fYu Bai and Thomas Keller 210 1$aWeinheim an der Bergstrasse, Germany :$cWiley-VCH,$d2014. 210 4$dİ2014 215 $a1 online resource (247 p.) 300 $aDescription based upon print version of record. 311 $a3-527-32793-2 311 $a1-306-15624-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aHigh Temperature Performance of Polymer Composites; Contents; Preface; Chapter 1 Introduction; 1.1 Background; 1.2 FRP Materials and Processing; 1.2.1 FRP Materials; 1.2.2 Processing Technologies; 1.3 FRP Structures; 1.3.1 Pontresina Bridge; 1.3.2 Eyecatcher Building; 1.3.3 Novartis Main Gate Building; 1.4 Structural Fire Safety; 1.4.1 Possible Fire Threats; 1.4.2 Building Fire Standards; 1.5 Summary; References; Chapter 2 Material States of FRP Composites under Elevated and High Temperatures; 2.1 Introduction; 2.2 Glass Transition; 2.2.1 Characterization; 2.2.2 Glass-Transition Temperature 327 $a2.2.3 Frequency Dependence of Glass-Transition Temperature2.2.4 Heating Rate Dependence of Glass-Transition Temperature; 2.2.5 Modeling of Glass Transition; 2.3 Leathery-to-Rubbery Transition; 2.4 Decomposition; 2.4.1 Characterization; 2.4.2 Decomposition Temperature; 2.4.3 Modeling of Decomposition; 2.5 Summary; References; Chapter 3 Effective Properties of Material Mixtures; 3.1 Introduction; 3.2 Volume Fraction of Material State; 3.2.1 General Case - n Elementary Processes; 3.2.2 Two Processes - Glass Transition and Decomposition; 3.3 Statistical Distribution Functions 327 $a3.3.1 In Cases of Two Material States3.3.2 In Cases of Three Material States; 3.4 Estimated Effective Properties; 3.5 Summary; References; Chapter 4 Thermophysical Properties of FRP Composites; 4.1 Introduction; 4.2 Change of Mass; 4.2.1 Decomposition Model; 4.2.2 TGA; 4.2.3 Estimation of Kinetic Parameters; 4.2.3.1 Friedman Method; 4.2.3.2 Kissinger Method; 4.2.3.3 Ozawa Method; 4.2.3.4 Comparison; 4.2.4 Mass Loss; 4.3 Thermal Conductivity; 4.3.1 Formulation of Basic Equations; 4.3.2 Estimation of kb and ka; 4.3.3 Comparison to Other Models; 4.4 Specific Heat Capacity 327 $a4.4.1 Formulation of Basic Equations4.4.2 Estimation of Cp,b and Cp,a; 4.4.3 Decomposition Heat, Cd; 4.4.4 Moisture Evaporation; 4.4.5 Comparison of Modeling and Experimental Results; 4.5 Time Dependence of Thermophysical Properties; 4.5.1 Introduction; 4.5.2 Influence of Heating Rates on Decomposition and Mass Transfer; 4.5.3 Influence on Effective Specific Heat Capacity; 4.5.4 Influence on Effective Thermal Conductivity; 4.6 Summary; References; Chapter 5 Thermomechanical Properties of FRP Composites; 5.1 Introduction; 5.2 Elastic and Shear Modulus; 5.2.1 Overview of Existing Models 327 $a5.2.2 Estimation of Kinetic Parameters5.2.3 Modeling of E-Modulus; 5.2.4 Modeling of G-Modulus; 5.3 Effective Coefficient of Thermal Expansion; 5.4 Strength; 5.4.1 Shear Strength; 5.4.2 Tensile Strength; 5.4.3 Compressive Strength; 5.5 Summary; References; Chapter 6 Thermal Responses of FRP Composites; 6.1 Introduction; 6.2 Full-Scale Cellular Beam Experiments; 6.2.1 Material Details; 6.2.2 Specimen and Instrumentation; 6.2.3 Experimental Setup and Procedure; 6.2.4 Experimental Observation; 6.2.5 Thermal Response from Measurements; 6.2.6 Discussion 327 $a6.3 Thermal Response Modeling of Beam Experiments 330 $aThe authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymeric materials over a wide range of thermal and mechanical loads. In addition, the authors treat worst-case scenarios, presenting heat-protect 606 $aPolymers 606 $aComposite materials 606 $aPolymers$xEffect of high temperatures on 606 $aComposite materials$xEffect of high temperatures on 615 0$aPolymers. 615 0$aComposite materials. 615 0$aPolymers$xEffect of high temperatures on. 615 0$aComposite materials$xEffect of high temperatures on. 676 $a620.192 700 $aBai$b Yu$01677336 701 $aKeller$b Thomas$0925918 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813882603321 996 $aHigh temperature performance of polymer composites$94044149 997 $aUNINA