LEADER 04198nam 2200541Ia 450 001 9910813776203321 005 20200520144314.0 010 $a1-61761-951-5 035 $a(CKB)2550000001040577 035 $a(EBL)3017677 035 $a(SSID)ssj0001074061 035 $a(PQKBManifestationID)11600543 035 $a(PQKBTitleCode)TC0001074061 035 $a(PQKBWorkID)11187178 035 $a(PQKB)10837042 035 $a(MiAaPQ)EBC3017677 035 $a(Au-PeEL)EBL3017677 035 $a(CaPaEBR)ebr10654648 035 $a(OCoLC)923653238 035 $a(EXLCZ)992550000001040577 100 $a20021011d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAdvances in laser and optics research$hVolume 3 /$fWilliam T. Arkin, editor 205 $a1st ed. 210 $aNew York $cNova Science$dc2010 215 $a1 online resource (208 p.) 225 1 $aAdvances in Laser and Optics Research ;$vv.3 300 $aDescription based upon print version of record. 311 $a1-59033-855-3 320 $aIncludes bibliographical references and index. 327 $aCONTENTS -- PREFACE -- ADVANCES IN COPPER LASER TECHNOLOGY:KINETIC ENHANCEMENT -- 1. Introduction -- 2. Background -- 2.1. Role of Pre-Pulse Electron Density -- 2.2. Engineering the Pre-Pulse Electron Density -- 3. Operating Characteristics of KE-CVLs -- 3.1. Output Power and Efficiency -- 3.2. Pulse Rate Scaling of KE-CVLS -- 3.3. Specific Average-Output Power Scaling -- 3.4. Temporal Characteristics of KE-CVL Output -- 3.5. Spatial Characteristics of KE-CVL Output -- 3.6. High Beam Quality Operation of KE-CVLs -- 4. Diagnostics of Kinetically Enhanced CVLs -- 4.1. Copper Density Measurement -- 4.2. Computer Modelling of KE-CVLs -- 5. Operation of KE-CVLS in Oscillator-Amplifier Configuration -- 6. High Power UV Generation from KE-CVLs -- MERGING QUANTUM THEORY INTO CLASSICALPHYSICS -- Abstract -- 1. Introduction -- 2. Comparison of Classical and Quantum Electrodynamics -- 2.1. Modes of the Electromagnetic Waves -- 2.2. Elementary Light-Matter Interaction in Classical Optics -- 2.3. The Classical Zero Point Field -- 2.4. The Zero Point Field and the Detection of Low Level Light -- 2.5. Spontaneous Emission and Absorption: Einstein's Coefficients -- 2.6. Mechanism of Emission and Absorption of a Photon -- 2.7. Comparison of Quantum and Classical Electrodynamics -- 3. Some Properties of Nonlinear Waves: The (3+0)D Solitons -- 3.1. The Filaments of Light -- 3.2. Perturbation of a Filament by a Magnetic Nonlinearity -- 4. Tentative Setting of a Classical Theory Including the Important Quantum Results -- 4.1. Is Matter Made of Electromagnetic (3+0)D Solitons? -- 4.2. Inserting the Quantum Calculation of Energies into the Classical Theory -- 5. Conclusion -- A POSSIBLE SCENARIO FOR VOLUMETRICDISPLAY THROUGH NANOPARTICLE SUSPENSIONS -- STATISTICAL PROPERTIES OF NONLINEARPHASE NOISE -- 1. Introduction -- 2. Joint Statistics of Nonlinear Phase Noise and Electric Field -- 2.1. Normalization of Nonlinear Phase Noise -- 2.2. Series Expansion -- 2.3. Joint Characteristic Function -- 3. The Probability Density Function of Nonlinear Phase Noise -- 4. Some Joint Characteristic Functions -- 4.1. Joint Characteristic Function of Nonlinear Phase Noise and Received Intensity -- 4.2. Joint Characteristic Function of Nonlinear Phase Noise and Phase of Amplifier Noise -- 5. Error Probability of DPSK Signal -- 5.1. Phase Distribution -- 5.2. Error Probability -- 5.3. Approximation of Independence -- 5.4. Numerical Results -- 6. Compensation of Nonlinear Phase Noise -- 6.1. Linear Compensation -- 6.2. Nonlinear Compensation. 410 0$aAdvances in Laser and Optics Research 606 $aLasers$xResearch 606 $aOptics$xResearch 615 0$aLasers$xResearch. 615 0$aOptics$xResearch. 701 $aArkin$b William T$01641728 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813776203321 996 $aAdvances in laser and optics research$93986036 997 $aUNINA