LEADER 05518nam 2200721Ia 450 001 9910813731803321 005 20200520144314.0 010 $a1-281-93448-8 010 $a9786611934484 010 $a981-279-454-9 035 $a(CKB)1000000000537946 035 $a(EBL)1681079 035 $a(OCoLC)879024905 035 $a(SSID)ssj0000254687 035 $a(PQKBManifestationID)12040560 035 $a(PQKBTitleCode)TC0000254687 035 $a(PQKBWorkID)10208638 035 $a(PQKB)11117979 035 $a(MiAaPQ)EBC1681079 035 $a(WSP)00004849 035 $a(Au-PeEL)EBL1681079 035 $a(CaPaEBR)ebr10255937 035 $a(EXLCZ)991000000000537946 100 $a20020424d2001 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSymmetry and Perturbation Theory $eproceedings of the international conference SPT 2001, Cala Gonone, Sardinia, Italy, 6-13 May 2001 /$fedited by Dario Bambusi, Giuseppe Gaeta, Mariano Cadoni 205 $a1st ed. 210 $aRiver Edge, New Jersey $cWorld Scientific$dc2001 215 $a1 online resource (260 p.) 300 $aDescription based upon print version of record. 311 $a981-02-4793-1 320 $aIncludes bibliographical references. 327 $aCONTENTS ; Preface ; Acknowledgements ; Geometry and Dynamics of Hyperelliptically Separable Systems ; References ; Multiple Hopf Bifurcation in Problems with O(2) Symmetry: Kuramoto-Sivashinky Equation; Abstract ; 1 Introduction ; 2 Analysis of the Problem ; 3 Application of the Method to the Kuramoto Sivashinsky Equation 327 $aReferences Sternberg-Chen Theorem for Equivariant Hamiltonian Vector Fields ; Introduction ; 1 Definitions ; 2 Main result ; 3 Deformation method ; 4 B-equivariant conjugacy; References ; A Functional Analysis Approach to Arnold Diffusion ; References 327 $aThe Symplectic Evans Matrix and Solitary Wave Instability References ; Classical Symmetries for a Boussinesq Equation with Nonlinear Dispersion ; 1 Introduction ; 2 Lie Symmetries ; 3 Optimal system and symmetry reductions ; 4 Travelling wave solutions ; 5 Conclusions ; References 327 $aPseudo-Normal Forms and their Applications Introduction and Main Results ; References ; Periodic Orbits of Langmuir's Atom ; Heteroclinic Cycles and Wreath Product Symmetries ; References ; Linearizing Resonant Normal Forms ; Introduction ; 1 Normal forms 327 $a2 Map to a linear system 3 Integration of normal forms ; References ; Symmetry Analysis and Reductions of the Schwarz-Korteweg-De Vries Equation in (2 + 1) Dimensions; 1 Introduction ; 2 Lie symmetries ; 3 Optimal systems and reductions ; 4 Invariance analysis of the (1 + 1)-dimensional systems; 5 Some explicit solutions ; 6 Conclusions ; References 327 $aTori Breakdown in Coupled Map Lattices 330 $a The third conference on "Symmetry and Perturbation Theory" (SPT2001) was attended by over 50 mathematicians, physicists and chemists. The proceedings present the advancement of research in this field - more precisely, in the different fields at whose crossroads symmetry and perturbation theory sit.
Contents: