LEADER 01142nam0-22003731i-450- 001 990001286110403321 005 20070521134809.0 010 $a0-19-851495-6 035 $a000128611 035 $aFED01000128611 035 $a(Aleph)000128611FED01 035 $a000128611 100 $a20001205d0599----km-y0itay50------ba 101 0 $aeng 200 1 $aAsymptotic analysis of fields in multi-structures$fVladimir A. Kozlov, Vladimir G. Maz'ya, Alexander B. Movchan 210 $aOxford$cClarendon Press$d1999 215 $axv, 282 p.$d24 cm 225 1 $aOxford mathematical monographs 610 0 $aEquazioni differenziali alle derivate parziali 610 0 $aTeoria asintotica 610 0 $aMeccanica dei solidi 676 $a515.353 700 1$aKozlov,$bVladimir$f<1954- >$061895 702 1$aMaz'ya,$bVladimir G. 702 1$aMovchan,$bAlexander B. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001286110403321 952 $aC-47-(50$b17079$fMA1 959 $aMA1 962 $a35-02 962 $a73-02 996 $aAsymptotic analysis of fields in multi-structures$9384881 997 $aUNINA LEADER 02625nam 2200661 450 001 9910813553903321 005 20220630102923.0 010 $a1-4704-6247-8 035 $a(CKB)4100000011437208 035 $a(MiAaPQ)EBC6346630 035 $a(RPAM)21691049 035 $a(PPN)250910209 035 $a(EXLCZ)994100000011437208 100 $a20201204d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGlobal smooth solutions for the inviscid SQG equation /$fAngel Castro, Diego Co?rdoba, Javier Go?mez-Serrano 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2020] 210 4$dİ2020 215 $a1 online resource (102 pages) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 1292 300 $a"Forthcoming, volue 266, number 1292." 311 $a1-4704-4214-0 320 $aIncludes bibliographical references. 327 $aThe equations -- Main theorem and Crandall-Rabinowitz (C-R) theorem -- Checking the hypotheses of the C-R theorem for the equation 2.7. 330 $a"In this memoir, we show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society ;$vno. 1292. 606 $aFluid dynamics$xMathematical models 606 $aInviscid flow 606 $aFlows (Differentiable dynamical systems) 606 $aFluid mechanics 606 $aSmoothness of functions 606 $aGeostrophic currents$xMathematical models 606 $aInterval analysis (Mathematics) 606 $aDifferential equations, Nonlinear$xNumerical solutions 615 0$aFluid dynamics$xMathematical models. 615 0$aInviscid flow. 615 0$aFlows (Differentiable dynamical systems) 615 0$aFluid mechanics. 615 0$aSmoothness of functions. 615 0$aGeostrophic currents$xMathematical models. 615 0$aInterval analysis (Mathematics) 615 0$aDifferential equations, Nonlinear$xNumerical solutions. 676 $a620.1064 686 $a35Q35$a65G30$a76B03$2msc 700 $aCastro$b Angel$f1982-$01677684 702 $aGomez-Serrano$b Javier$f1985- 702 $aCo?rdoba Gazolaz$b Diego$f1971- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813553903321 996 $aGlobal smooth solutions for the inviscid SQG equation$94044777 997 $aUNINA