LEADER 03754nam 2200589 450 001 9910813326903321 005 20230808202653.0 010 $a3-11-047916-8 010 $a3-11-047945-1 024 7 $a10.1515/9783110479454 035 $a(CKB)3850000000001081 035 $a(EBL)4707937 035 $a(OCoLC)962321927 035 $a(MiAaPQ)EBC4707937 035 $a(DE-B1597)466759 035 $a(OCoLC)960040322 035 $a(OCoLC)979760869 035 $a(DE-B1597)9783110479454 035 $a(Au-PeEL)EBL4707937 035 $a(CaPaEBR)ebr11274566 035 $a(CaONFJC)MIL957921 035 $a(EXLCZ)993850000000001081 100 $a20161013h20162016 uy 0 101 0 $aeng 135 $aurcn|nnn||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStochastic methods for boundary value problems $enumerics for high-dimensional PDEs and applications /$fKarl K. Sabelfeld, Nikolai A. Simonov 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2016. 210 4$dİ2016 215 $a1 online resource (x, 198 pages) $ccolour illustrations 311 $a3-11-047906-0 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tPreface -- $tContents -- $t1. Introduction -- $t2. Random walk algorithms for solving integral equations -- $t3. Random walk-on-boundary algorithms for the Laplace equation -- $t4. Walk-on-boundary algorithms for the heat equation -- $t5. Spatial problems of elasticity -- $t6. Variants of the random walk on boundary for solving stationary potential problems -- $t7. Splitting and survival probabilities in random walk methods and applications -- $t8. A random WOS-based KMC method for electron-hole recombinations -- $t9. Monte Carlo methods for computing macromolecules properties and solving related problems -- $tBibliography 330 $aThis monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach.The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics. Contents:IntroductionRandom walk algorithms for solving integral equationsRandom walk-on-boundary algorithms for the Laplace equationWalk-on-boundary algorithms for the heat equationSpatial problems of elasticityVariants of the random walk on boundary for solving stationary potential problemsSplitting and survival probabilities in random walk methods and applicationsA random WOS-based KMC method for electron-hole recombinationsMonte Carlo methods for computing macromolecules properties and solving related problemsBibliography 606 $aBoundary value problems$xNumerical solutions 606 $aStochastic analysis 606 $aRandom walks (Mathematics) 615 0$aBoundary value problems$xNumerical solutions. 615 0$aStochastic analysis. 615 0$aRandom walks (Mathematics) 676 $a519.2/3 700 $aSabelfeld$b K. K$g(Karl Karlovich),$01027546 702 $aSimonov$b N. A. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813326903321 996 $aStochastic methods for boundary value problems$93967873 997 $aUNINA