LEADER 05876nam 2200745 a 450 001 9910813177203321 005 20240313205946.0 010 $a1-118-56809-5 010 $a1-118-56810-9 010 $a1-118-56808-7 035 $a(CKB)2670000000356127 035 $a(EBL)1184219 035 $a(DLC) 2013013333 035 $a(Au-PeEL)EBL1184219 035 $a(CaPaEBR)ebr10695846 035 $a(CaONFJC)MIL487322 035 $a(PPN)178999156 035 $a(OCoLC)835118484 035 $a(MiAaPQ)EBC1184219 035 $a(EXLCZ)992670000000356127 100 $a20150303d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aAdvanced aircraft design $econceptual design, analysis and optimization of subsonic civil airplanes /$fEgbert Torenbeek.(Delft University of Technology, The Netherlands) 205 $a1st ed. 210 1$aChichester, West Sussex, U.K. :$cWiley,$d[2013] 210 4$d©2013 215 $a1 online resource (438 p.) 225 1 $aAerospace series 225 1 $aTHEi Wiley ebooks 300 $aDescription based upon print version of record. 311 1 $a1-118-56811-7 311 1 $a9781118568118 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aADVANCED AIRCRAFT DESIGN; Contents; Foreword; Series Preface; Preface; Acknowledgements; 1 Design of the Well-Tempered Aircraft; 1.1 How Aircraft Design Developed; 1.1.1 Evolution of Jetliners and Executive Aircraft; 1.1.2 A Framework for Advanced Design; 1.1.3 Analytical Design Optimization; 1.1.4 Computational Design Environment; 1.2 Concept Finding; 1.2.1 Advanced Design; 1.2.2 Pre-conceptual Studies; 1.3 Product Development; 1.3.1 Concept Definition; 1.3.2 Preliminary Design; 1.3.3 Detail Design; 1.4 Baseline Design in a Nutshell; 1.4.1 Baseline Sizing; 1.4.2 Power Plant 327 $a1.4.3 Weight and Balance 1.4.4 Structure; 1.4.5 Performance Analysis; 1.4.6 Closing the Loop; 1.5 Automated Design Synthesis; 1.5.1 Computational Systems Requirements; 1.5.2 Examples; 1.5.3 Parametric Surveys; 1.6 Technology Assessment; 1.7 Structure of the Optimization Problem; 1.7.1 Analysis Versus Synthesis; 1.7.2 Problem Classification; Bibliography; 2 Early Conceptual Design; 2.1 Scenario and Requirements; 2.1.1 What Drives a Design?; 2.1.2 Civil Airplane Categories; 2.1.3 Top Level Requirements; 2.2 Weight Terminology and Prediction; 2.2.1 Method Classification 327 $a2.2.2 Basic Weight Components 2.2.3 Weight Limits; 2.2.4 Transport Capability; 2.3 The Unity Equation; 2.3.1 Mission Fuel; 2.3.2 Empty Weight; 2.3.3 Design Weights; 2.4 Range Parameter; 2.4.1 Aerodynamic Efficiency; 2.4.2 Specific Fuel Consumption and Overall Efficiency; 2.4.3 Best Cruise Speed; 2.5 Environmental Issues; 2.5.1 Energy and Payload Fuel Efficiency; 2.5.2 'Greener by Design'; Bibliography; 3 Propulsion and Engine Technology; 3.1 Propulsion Leading the Way; 3.2 Basic Concepts of Jet Propulsion; 3.2.1 Turbojet Thrust; 3.2.2 Turbofan Thrust; 3.2.3 Specific Fuel Consumption 327 $a3.2.4 Overall Efficiency 3.2.5 Thermal and Propulsive Efficiency; 3.2.6 Generalized Performance; 3.2.7 Mach Number and Altitude Effects; 3.3 Turboprop Engines; 3.3.1 Power and Specific Fuel Consumption; 3.3.2 Generalized Performance; 3.3.3 High Speed Propellers; 3.4 Turbofan Engine Layout; 3.4.1 Bypass Ratio Trends; 3.4.2 Rise and Fall of the Propfan; 3.4.3 Rebirth of the Open Rotor?; 3.5 Power Plant Selection; 3.5.1 Power Plant Location; 3.5.2 Alternative Fuels; 3.5.3 Aircraft Noise; Bibliography; 4 Aerodynamic Drag and Its Reduction; 4.1 Basic Concepts 327 $a4.1.1 Lift, Drag and Aerodynamic Efficiency 4.1.2 Drag Breakdown and Definitions; 4.2 Decomposition Schemes and Terminology; 4.2.1 Pressure and Friction Drag; 4.2.2 Viscous Drag; 4.2.3 Vortex Drag; 4.2.4 Wave Drag; 4.3 Subsonic Parasite and Induced Drag; 4.3.1 Parasite Drag; 4.3.2 Monoplane Induced Drag; 4.3.3 Biplane Induced Drag; 4.3.4 Multiplane and Boxplane Induced Drag; 4.4 Drag Polar Representations; 4.4.1 Two-term Approximation; 4.4.2 Three-term Approximation; 4.4.3 Reynolds Number Effects; 4.4.4 Compressibility Correction; 4.5 Drag Prediction; 4.5.1 Interference Drag 327 $a4.5.2 Roughness and Excrescences 330 $aAlthough the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950's, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual desig 410 0$aAerospace series (Chichester, West Sussex, U.K.). 410 0$aTHEi Wiley ebooks. 606 $aAvions de transport$xDisseny i construcció$2lemac 606 $aAvions de reacció$xDisseny i construcció$2lemac 606 $aTransport planes$xDesign and construction 606 $aJet planes$xDesign and construction 606 $aAirplanes$xPerformance 615 7$aAvions de transport$xDisseny i construcció 615 7$aAvions de reacció$xDisseny i construcció 615 0$aTransport planes$xDesign and construction. 615 0$aJet planes$xDesign and construction. 615 0$aAirplanes$xPerformance. 676 $a629.133/34 700 $aTorenbeek$b Egbert$067834 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813177203321 996 $aAdvanced aircraft design$93983557 997 $aUNINA