LEADER 04572nam 2201189z- 450 001 9910566486703321 005 20231214132954.0 035 $a(CKB)5680000000037512 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/81184 035 $a(EXLCZ)995680000000037512 100 $a20202205d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSelected Papers from Experimental Stress Analysis 2020 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (214 p.) 311 $a3-0365-3455-5 311 $a3-0365-3456-3 330 $aThis Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19?22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal?mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials? testing. 606 $aTechnology: general issues$2bicssc 606 $aHistory of engineering & technology$2bicssc 610 $aresidual stresses 610 $aneutron diffraction 610 $athree axis setting 610 $ahigh resolution 610 $abent crystal monochromator 610 $abent crystal analyzer 610 $astainless steel 316L 610 $aadditive manufacturing 610 $amultiaxial loading 610 $aplasticity 610 $adigital image correlation method 610 $ahill yield criterion 610 $aisotropic hardening 610 $afinite element method (FEM) 610 $astraightening process 610 $athree-point bending 610 $aFEM 610 $acontrol strategy 610 $abillet straightening 610 $amultiaxial fatigue 610 $ahigh-cycle fatigue 610 $amultiaxial fatigue experiments 610 $aS-N curve approximation 610 $alaser welding 610 $apressure vessel steel 610 $amicrostructure 610 $aX-ray and neutron diffraction 610 $ahigh-cycle fatigue tests 610 $awearable 610 $aflexible 610 $astructure 610 $astiffness 610 $abiomedical 610 $amechanics 610 $asimulation 610 $apattern 610 $a3D print 610 $aPA12 610 $atram 610 $apedestrian 610 $acrash 610 $awindshield model 610 $aHIC 610 $ahole-drilling 610 $aPhotoStress 610 $adigital image correlation 610 $aexperimental analysis 610 $afinite element analysis 610 $acomposite 610 $athermoplastic 610 $ainterlaminar strength 610 $apolyphenylensulfid 610 $apolyetheretherketone 610 $apolyaryletherketone 610 $acurved beam 610 $aNDE 610 $ainfrared thermography 610 $aInfrared Nondestructive Testing 610 $aCFRP 610 $aAnand material model 610 $amaterial parameters 610 $aABS-M30 610 $aindentation test 610 $agenetic algorithm 610 $aacoustic emission 610 $aCFRP composite tube 610 $aunsupervised learning approach 610 $afailure mechanism 615 7$aTechnology: general issues 615 7$aHistory of engineering & technology 700 $aKocich$b Radim$4edt$01280996 702 $aKunc?icka?$b Lenka$4edt 702 $aKocich$b Radim$4oth 702 $aKunc?icka?$b Lenka$4oth 906 $aBOOK 912 $a9910566486703321 996 $aSelected Papers from Experimental Stress Analysis 2020$93017807 997 $aUNINA LEADER 03089nam 2200805 a 450 001 9910812844303321 005 20240313074814.0 010 $a1-84779-659-1 010 $a1-78170-077-X 010 $a1-84779-146-8 024 7 $a10.7765/9781847791467 035 $a(CKB)2560000000085644 035 $a(EBL)1069565 035 $a(OCoLC)818847281 035 $a(SSID)ssj0000712839 035 $a(PQKBManifestationID)12266693 035 $a(PQKBTitleCode)TC0000712839 035 $a(PQKBWorkID)10651511 035 $a(PQKB)10993761 035 $a(StDuBDS)EDZ0000085692 035 $a(OCoLC)936292113 035 $a(MdBmJHUP)muse78080 035 $a(Au-PeEL)EBL1069565 035 $a(CaPaEBR)ebr10623299 035 $a(CaONFJC)MIL843470 035 $a(MiAaPQ)EBC1069565 035 $a(DE-B1597)660641 035 $a(DE-B1597)9781847791467 035 $a(EXLCZ)992560000000085644 100 $a20080825d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aResisting history $ereligious transcendence and the invention of the unconscious /$fRhodri Hayward 205 $a1st ed. 210 $aManchester ;$aNew York $cManchester University Press ;$aNew York $cDistributed by Palgrave$d2007 215 $a1 online resource (161 p.) 225 1 $aEncounters 300 $aIncludes index. 311 $a0-7190-9537-9 311 $a0-7190-7414-2 320 $aIncludes bibliographical references and index. 327 $aCopyright; Contents; Preface; Abbreviations; 1 The invention of the self; 2 The invention of the unconscious; 3 The soul governed; 4 The self triumphant; Index. 330 $aHow can historians make sense of visions, hauntings and demonic possession? Do miraculous events have any place in a world governed by cause and effect? In Resisting history, Rhodri Hayward examines the cumulative attempts of theologians, historians and psychologists to create a consistent and rational narrative capable of containing the inexplicable. This lucid and provocative account argues that the psychological theories we routinely use to make sense of supernatural experience were born out of struggles between popular mystics and conservative authorities. Hayward's lively analysis of the 410 0$aEncounters (Manchester University Press) 606 $aPsychology and religion 606 $aMysticism$xHistory 610 $aChristology. 610 $acause and effect. 610 $ademonic possession. 610 $ahauntings. 610 $ainexplicable. 610 $amiraculous events. 610 $amystics. 610 $apsychological theories. 610 $asupernatural. 610 $avisions. 615 0$aPsychology and religion. 615 0$aMysticism$xHistory. 676 $a200.1/9 700 $aHayward$b Rhodri$g(Rhodri Lloyd)$01627546 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812844303321 996 $aResisting history$93985929 997 $aUNINA