LEADER 01147cam a2200289 i 4500 001 991003678669707536 005 20180420152542.0 008 180319s maua b 001 0 eng 020 $a9780128030127 020 $a0128030127 035 $ab14370402-39ule_inst 040 $aBibl. Dip.le Aggr. Scienze Economia - Sez. Settore Economico$bita 082 00$a519.2 100 1 $aChristakos, George$0283759 245 10$aSpatiotemporal random fields :$btheory and applications /$cGeorge Christakos 250 $a2. ed 260 $aAmsterdam, Netherlands :$bElsevier,$c[2017] 300 $axvii, 677 pages :$billustrations ;$c25 cm 504 $aIncludes bibliographical references (pages 643-652) and index 650 0$aEnvironmental health$xMathematical models 650 0$aStochastic processes 907 $a.b14370402$b24-10-19$c16-07-19 912 $a991003678669707536 945 $aLE025 ECO 519.2 CHR01.01$g1$i2025000285231$lle025$nProf. Posa$o-$pE115.34$q-$rl$s- $t0$u1$v8$w1$x0$y.i15905913$z24-10-19 996 $aSpatiotemporal random fields$91988296 997 $aUNISALENTO 998 $anone$b16-07-19$cm$da $e $feng$gmau$h0$i0 LEADER 03660nam 2200661 450 001 9910812670503321 005 20200520144314.0 010 $a1-119-11773-9 010 $a1-119-11784-4 010 $a1-119-11772-0 035 $a(CKB)3710000000451363 035 $a(EBL)1964130 035 $a(SSID)ssj0001517902 035 $a(PQKBManifestationID)12591058 035 $a(PQKBTitleCode)TC0001517902 035 $a(PQKBWorkID)11506417 035 $a(PQKB)11548772 035 $a(MiAaPQ)EBC4043045 035 $a(MiAaPQ)EBC1964130 035 $a(Au-PeEL)EBL4043045 035 $a(CaPaEBR)ebr11115210 035 $a(CaONFJC)MIL816304 035 $a(OCoLC)910802665 035 $a(PPN)19220503X 035 $a(EXLCZ)993710000000451363 100 $a20151109h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSystems with delays $eanalysis, control, and computations /$fA. V. Kim and A. V. Ivanov 210 1$aHoboken, New Jersey ;$aSalem, Massachusetts :$cScrivener Publishing :$cWiley,$d2015. 210 4$dİ2015 215 $a1 online resource (180 p.) 300 $aDescription based upon print version of record. 311 $a1-119-11758-5 320 $aIncludes bibliographical references and index. 327 $a2.2 Lyapunov-Krasovskii functionals2.2.1 Structure of Lyapunov-Krasovskii quadratic functionals; 2.2.2 Elementary functionals and their properties; 2.2.3 Total derivative of functionals with respect to systems with delays; 2.3 Positiveness of functionals; 2.3.1 Definitions; 2.3.2 Sufficient conditions of positiveness; 2.3.3 Positiveness of functionals; 2.4 Stability via Lyapunov-Krasovskii functionals; 2.4.1 Stability conditions in the norm || · || H; 2.4.2 Stability conditions in the norm || · ||; 2.4.3 Converse theorem; 2.4.4 Examples; 2.5 Coefficient conditions of stability 327 $a2.5.1 Linear system with discrete delay2.5.2 Linear system with distributed delays; 3 Linear quadratic control; 3.1 Introduction; 3.2 Statement of the problem; 3.3 Explicit solutions of generalized Riccati equations; 3.3.1 Variant 1; 3.3.2 Variant 2; 3.3.3 Variant 3; 3.4 Solution of Exponential Matrix Equation; 3.4.1 Stationary solution method; 3.4.2 Gradient methods; 3.5 Design procedure; 3.5.1 Variants 1 and 2; 3.5.2 Variant 3; 3.6 Design case studies; 3.6.1 Example 1; 3.6.2 Example 2; 3.6.3 Example 3; 3.6.4 Example 4; 3.6.5 Example 5: Wind tunnel model 327 $a3.6.6 Example 6: Combustion stability in liquid propellant rocket motors4 Numerical methods; 4.1 Introduction; 4.2 Elementary one-step methods; 4.2.1 Euler'smethod; 4.2.2 Implicit methods (extrapolation); 4.2.3 Improved Euler'smethod; 4.2.4 Runge-Kutta-like methods; 4.3 Interpolation and extrapolation of the model pre-history; 4.3.1 Interpolational operators; 4.3.2 Extrapolational operators; 4.3.3 Interpolation-Extrapolation operator; 4.4 Explicit Runge-Kutta-like methods; 4.5 Approximation orders of ERK-like methods; 4.6 Automatic step size control; 4.6.1 Richardson extrapolation 327 $a4.6.2 Automatic step size control 606 $aDelay differential equations 606 $aLinear systems 606 $aDerivatives (Mathematics) 615 0$aDelay differential equations. 615 0$aLinear systems. 615 0$aDerivatives (Mathematics) 676 $a515/.35 700 $aKim$b A. V.$0890977 702 $aIvanov$b A. V. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812670503321 996 $aSystems with delays$94119311 997 $aUNINA