LEADER 01549nam a2200349 i 4500 001 991000505979707536 005 20020509171522.0 008 951228s1995 it ||| | ita 020 $a8885979580 035 $ab11368469-39ule_inst 035 $aPARLA209774$9ExL 040 $aDip.to Filol. Class. e Med.$bita 100 1 $aBorgia, Luigi$0153475 245 10$aStudi in onore di Arnaldo D'Addario /$ca cura di Luigi Borgia... [et al.] 260 $aLecce :$bConte,$c1995 300 $a5 v. ;$c24 cm 490 0 $aAttraverso la storia ;$v1 650 4$aD'Addario, Arnaldo - Scritti in onore 700 1 $aD'Addario, Arnaldo 700 1 $aViti, Paolo 700 1 $aZaccaria, Raffaella Maria 700 1 $aDe Luca, Francesco 907 $a.b11368469$b01-03-17$c01-07-02 912 $a991000505979707536 945 $aLE007 M 1212/1$cV. 1$g1$i2007000026960$lle007$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11550107$z01-07-02 945 $aLE007 M 1212/2$cV. 2$g1$i2007000026977$lle007$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11550119$z01-07-02 945 $aLE007 M 1212/3$cV. 3$g1$i2007000026984$lle007$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11550120$z01-07-02 945 $aLE007 M 1212/4$cV. 4.1$g1$i2007000026991$lle007$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11550132$z01-07-02 945 $aLE007 M 1212/5$cV. 4.2$g1$i2007000027004$lle007$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i11550144$z01-07-02 996 $aStudi in onore di Arnaldo D'Addario$9816364 997 $aUNISALENTO 998 $ale007$b01-01-95$cm$da $e-$fita$git $h0$i5 LEADER 00954nam a22002531i 4500 001 991002476189707536 005 20030725072434.0 008 030925s1941 it |||||||||||||||||ita 035 $ab12294007-39ule_inst 035 $aARCHE-034157$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a195 245 00$aConcetto e programma della filosofia d'oggi 260 $aMilano :$bF.lli Bocca,$c1941 300 $aXVI, 286 p. ;$c25 cm 440 0$aIstituto di studi filosofici.$pSezione di Torino ;$v3 650 4$aFilosofia$xItalia 907 $a.b12294007$b02-04-14$c08-10-03 912 $a991002476189707536 945 $aLE002 195 CON 945 $aLE002 Fil. III H 18$g1$i2002000063304$lle002$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12688216$z08-10-03 996 $aConcetto e programma della filosofia d'oggi$9163837 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$fita$git $h0$i1 LEADER 06023nam 2200637Ia 450 001 9910812664203321 005 20240314001722.0 010 $a9781118650714 010 $a1118650719 010 $a9781118650684 010 $a1118650689 010 $a9781118650707 010 $a1118650700 035 $a(CKB)2670000000388233 035 $a(EBL)1221740 035 $a(OCoLC)851972420 035 $a(MiAaPQ)EBC1221740 035 $a(DLC) 2013019810 035 $a(Au-PeEL)EBL1221740 035 $a(CaPaEBR)ebr10726733 035 $a(PPN)191912034 035 $a(Perlego)1000108 035 $a(EXLCZ)992670000000388233 100 $a20130514d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aSpectral clustering and biclustering $elearning large graphs and contingency tables /$fMarianna Bolla 205 $a1st ed. 210 $aChichester, West Sussex, United Kingdom $cJohn Wiley & Sons Inc.$d2013 215 $a1 online resource (294 p.) 300 $aDescription based upon print version of record. 311 08$a9781118344927 311 08$a1118344928 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: Dedication Preface Acknowledgements List of Abbreviations Introduction 1 Multivariate analysis techniques for representing graphs and contingency tables 1.1 Quadratic placement problems for weighted graphs and hypergraphs 1.1.1 Representation of edge-weighted graphs 1.1.2 Representation of hypergraphs 1.1.3 Examples for spectra and representation of simple graphs 1.2 SVD of contingency tables and correspondence matrices 1.3 Normalized Laplacian and modularity spectra 1.4 Representation of joint distributions 1.4.1 General setup 1.4.2 Integral operators between L2 spaces 1.4.3 When the kernel is the joint distribution itself 1.4.4 Maximal correlation and optimal representations 1.5 Treating nonlinearities via reproducing kernel Hilbert spaces 1.5.1 Notion of the reproducing kernel 1.5.2 RKHS corresponding to a kernel 1.5.3 Two examples of an RKHS 1.5.4 Kernel - based on a sample - and the empirical feature map References 2 Multiway cut problems 2.1 Estimating multiway cuts via spectral relaxation 2.1.1 Maximum, minimum, and ratio cuts of edge-weighted graphs 2.1.2 Multiway cuts of hypergraphs 2.2 Normalized cuts 2.3 The isoperimetric number and sparse cuts 2.4 The Newman-Girvan modularity 2.4.1 Maximizing the balanced Newman-Girvan modularity 2.4.2 Maximizing the normalized Newman-Girvan modularity 2.4.3 Anti-community structure and some examples 2.5 Normalized bicuts of contingency tables References 3 Large networks, perturbation of block structures 3.1 Symmetric block structures burdened with random noise 3.1.1 General blown-up structures 3.1.2 Blown-up multipartite structures 3.1.3 Weak links between disjoint components 3.1.4 Recognizing the structure 3.1.5 Random power law graphs and the extended planted partition model 3.2 Noisy contingency tables 3.2.1 Singular values of a noisy contingency table 3.2.2 Clustering the rows and columns via singular vector pairs 3.2.3 Perturbation results for correspondence matrices 3.2.4 Finding the blown-up skeleton 3.3 Regular cluster pairs 3.3.1 Normalized modularity and volume regularity of edgeweighted graphs 3.3.2 Correspondence matrices and volume regularity of contingency tables 3.3.3 Directed graphs References 4 Testable graph and contingency table parameters 4.1 Convergent graph sequences 4.2 Testability of weighted graph parameters 4.3 Testability of minimum balanced multiway cuts 4.4 Balanced cuts and fuzzy clustering 4.5 Noisy graph sequences 4.6 Convergence of the spectra and spectral subspaces 4.7 Convergence of contingency tables References 5 Statistical learning of networks 5.1 Parameter estimation in random graph models 5.1.1 EMalgorithmfor estimating the parameters of the block model 5.1.2 Parameter estimation in the _ and _ models 5.2 Nonparametric methods for clustering networks 5.2.1 Spectral clustering of graphs and biclustering of contingency tables 5.2.2 Clustering of hypergraphs 5.3 Supervised learning References A Linear algebra and some functional analysis A.1 Metric, normed vector, and Euclidean spaces A.2 Hilbert spaces A.3 Matrices References B Random vectors and matrices B.1 Random vectors B.2 Random matrices References C Multivariate statistical methods C.1 Principal Component Analysis C.2 Canonical Correlation Analysis C.3 Correspondence Analysis C.4 Multivariate Regression and Analysis of Variance C.5 The k-means clustering C.6 Multidimensional Scaling C.7 Discriminant Analysis References Index . 330 $a"Offering a timely and novel treatment of spectral clustering and biclustering of networks, this book bridges the gap between graph theory and statistics by giving answers to the demanding questions that arise when statisticians are confronted with large weighted graphs or rectangular arrays. The author presents a wide range of classical and modern statistical methods adapted to weighted graphs and contingency tables. In addition, practical examples from social and biological networks are included, and a teacher's guide is provided on a supporting website"--$cProvided by publisher. 330 $a"Provides a timely, novel and unified treatment of many important problems surrounding the spectral and classification properties of networks"--$cProvided by publisher. 606 $aContingency tables 606 $aGraph theory 606 $aMultivariate analysis 615 0$aContingency tables. 615 0$aGraph theory. 615 0$aMultivariate analysis. 676 $a515/.35 686 $aMAT029000$2bisacsh 700 $aBolla$b Marianna$01712793 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812664203321 996 $aSpectral clustering and biclustering$94105233 997 $aUNINA