LEADER 04288nam 2200601 450 001 9910812563503321 005 20230607225456.0 010 $a3-11-080023-3 024 7 $a10.1515/9783110800234 035 $a(CKB)2550000001178203 035 $a(CaPaEBR)ebrary10789650 035 $a(SSID)ssj0000985295 035 $a(PQKBManifestationID)12437976 035 $a(PQKBTitleCode)TC0000985295 035 $a(PQKBWorkID)10929959 035 $a(PQKB)10272805 035 $a(MiAaPQ)EBC3044618 035 $a(DE-B1597)42374 035 $a(OCoLC)979839048 035 $a(DE-B1597)9783110800234 035 $a(Au-PeEL)EBL3044618 035 $a(CaPaEBR)ebr10789650 035 $a(CaONFJC)MIL558391 035 $a(OCoLC)922947766 035 $a(EXLCZ)992550000001178203 100 $a20000503d2001 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInertial navigation systems with geodetic applications /$fChristopher Jekeli 210 1$aBerlin ;$aNew York :$cWalter de Gruyter,$d2001. 215 $a1 online resource (368 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-11-015903-1 311 $a1-306-27140-1 320 $aIncludes bibliographical references and index. 327 $tCoordinate Frames and Transformations --$tCoordinate Frames --$tInertial Frame --$tEarth-Centered-Earth-Fixed Frame --$tNavigation Frame --$tTransformations --$tDirection Cosines --$tEuler Angles --$tQuaternions --$tAxial Vectors --$tAngular Rates --$tDifferential Equation of the Transformation --$tSpecific Coordinate Transformations --$tFourier Transforms --$tOrdinary Differential Equations --$tLinear Differential Equations --$tGeneral Solution of Linear Differential Equations --$tHomogeneous Solution --$tAn Example --$tFundamental Set of Solutions --$tParticular Solution --$tThe Example, Continued --$tNumerical Methods --$tRunge-Kutta Methods --$tNumerical Integration of Functions --$tInertial Measurement Units --$tGyroscopes --$tMechanical Gyroscopes --$tSDF Gyro --$tPrincipal Error Terms --$tTDF Gyro --$tOptical Gyroscopes --$tRing Laser Gyro --$tRLG Error Sources --$tFiber-Optic Gyro --$tFOG Error Sources --$tAccelerometer --$tAccelerations in Non-Intertial Frames --$tForce-Rebalance Dynamics --$tPendulous Accelerometer Examples --$tVibrating Element Dynamics --$tError Sources --$tIntertial Navigation System --$tMechanizations --$tSpace-Stabilized Mechanization --$tLocal-Level Mechanization --$tSchuler Tuning --$tWander Azimuth Mechanization --$tStrapdown Mechanization --$tNumerical Determination of the Transformation Matrix --$tA Second-Order Algorithm --$tA Third-Order Algorithm --$tSpecializations --$tNavigation Equations --$tUnified Approach --$tNavigation Equations in i-Frame --$tNavigation Equations in e-Frame --$tNavigation Equations in n-Frame. 330 $aThis book covers all aspects of inertial navigation systems (INS), including the sensor technology and the estimation of instrument errors, as well as their integration with the Global Positioning System (GPS) for geodetic applications. Complete mathematical derivations are given. Both stabilized and strapdown mechanizations are treated in detail. Derived algorithms to process sensor data and a comprehensive explanation of the error dynamics provide not only an analytical understanding but also a practical implementation of the concepts. A self-contained description of GPS, with emphasis on kinematic applications, is one of the highlights in this book.The text is of interest to geodesists, including surveyors, mappers, and photogrammetrists; to engineers in aviation, navigation, guidance, transportation, and robotics; and to scientists involved in aerogeophysics and remote sensing. 606 $aInertial navigation$xMathematics 607 $aEarth (Planet)$xFigure$xMeasurement 615 0$aInertial navigation$xMathematics. 676 $a526/.1 686 $aZI 9120$2rvk 700 $aJekeli$b Christopher$f1953-$01645212 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812563503321 996 $aInertial navigation systems with geodetic applications$93991533 997 $aUNINA