LEADER 02155nam 2200493 450 001 9910812541603321 005 20230814182500.0 010 $a1-4704-0003-0 035 $a(CKB)3360000000464297 035 $a(EBL)3113658 035 $a(SSID)ssj0000973208 035 $a(PQKBManifestationID)11611888 035 $a(PQKBTitleCode)TC0000973208 035 $a(PQKBWorkID)10958991 035 $a(PQKB)10403817 035 $a(MiAaPQ)EBC3113658 035 $a(RPAM)0000000689 035 $a(PPN)19540940X 035 $a(EXLCZ)993360000000464297 100 $a20750505d1965 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA hierarchy of formulas in set theory /$fAzriel Le?vy 210 1$aProvidence :$cAmerican Mathematical Society,$d1965. 215 $a1 online resource (79 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 57 311 0 $a0-8218-1257-2 320 $aBibliography: pages 74-76. 327 $a""Contents""; ""A?1. Introduction""; ""A?2. Definition of the hierarchy""; ""A?3. The relative hierarchy""; ""A?4. Formulas in I?£[sub(o)] and admissible terms""; ""A?5. The satisfaction predicates""; ""A?6. The semantical hierarchy theorem""; ""A?7. Undecidable sentences""; ""A?8. The syntactical hierarchy theorems""; ""A?9. Reflection phenomena""; ""A?10. The lower levels of the hierarchy""; ""Appendix A. The dependence of the results on the axiom of foundation""; ""Appendix B. The Boolean closure of I?£[sub(j)]""; ""Appendix C. Complete reflection in Ackermann's set theory"" 327 $a""Appendix D. Equivalence of the Skolem-LI??wenheim theorem with the axiom of dependent choices""""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$v57. 606 $aSet theory 615 0$aSet theory. 700 $aLevy$b Azriel$041990 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812541603321 996 $aA hierarchy of formulas in set theory$93915871 997 $aUNINA