LEADER 02583nam 22007093u 450 001 9910812520803321 005 20240416075650.0 010 $a1-4704-0054-5 035 $a(CKB)3360000000464372 035 $a(EBL)3113446 035 $a(SSID)ssj0000973833 035 $a(PQKBManifestationID)11498512 035 $a(PQKBTitleCode)TC0000973833 035 $a(PQKBWorkID)10985166 035 $a(PQKB)11627747 035 $a(MiAaPQ)EBC3113446 035 $a(RPAM)2719989 035 $a(PPN)195410718 035 $a(EXLCZ)993360000000464372 100 $a20151005d2005|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPunctual Hilbert Schemes 205 $a1st ed. 210 $aProvidence $cAmerican Mathematical Society$d2005 215 $a1 online resource (123 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vv.10 300 $aDescription based upon print version of record. 311 $a0-8218-2188-1 311 $a0-8218-3954-3 320 $aBibliography: p. 105-108. 327 $a""TABLE OF CONTENTS""; ""CHAPTER 1. A STRATIFICATION OF THE HILBERT SCHEME""; ""1A. Summary""; ""1B. Standard Generators for an Ideal in R when char k = 0""; ""CHAPTER 2. Z[sub(T)] AND G[sub(T)] IN THE CASE char k = 0""; ""CHAPTER 3. Z[sub(T)] AND G[sub(T)] WHEN char k = p""; ""3A. Every Ideal has a Normal Pattern: Z[sub(T)] and G[sub(T)] when r = 2, char k > |T|""; ""3B. Low Characteristics, char k < |T|; Weak-Normal Patterns""; ""CHAPTER 4. VECTOR SPACES OF FORM, LOCAL PARAMETERS ON THE HILBERT SCHEME""; ""4A. Normal Presentations""; ""4B. Vector Spaces of Forms"" 410 0$aMemoirs of the American Mathematical Society 606 $aHilbert schemes 606 $aIdeals (Algebra) 606 $aPower series rings 606 $aMathematics$2HILCC 606 $aPhysical Sciences & Mathematics$2HILCC 606 $aGeometry$2HILCC 606 $aMathematical Theory$2HILCC 606 $aAlgebra$2HILCC 615 4$aHilbert schemes. 615 4$aIdeals (Algebra). 615 4$aPower series rings. 615 7$aMathematics 615 7$aPhysical Sciences & Mathematics 615 7$aGeometry 615 7$aMathematical Theory 615 7$aAlgebra 676 $a512/.33 676 $a510.8 s 700 $aIarrobino$b Anthony A$01685841 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910812520803321 996 $aPunctual Hilbert Schemes$94120896 997 $aUNINA