LEADER 05557nam 2200721Ia 450 001 9910812494203321 005 20240313222517.0 010 $a1-281-96822-6 010 $a9786611968229 010 $a981-281-880-4 035 $a(CKB)1000000000549736 035 $a(EBL)1193545 035 $a(SSID)ssj0000291246 035 $a(PQKBManifestationID)12080049 035 $a(PQKBTitleCode)TC0000291246 035 $a(PQKBWorkID)10249144 035 $a(PQKB)10074713 035 $a(MiAaPQ)EBC1193545 035 $a(WSP)00006892 035 $a(Au-PeEL)EBL1193545 035 $a(CaPaEBR)ebr10698991 035 $a(CaONFJC)MIL196822 035 $a(OCoLC)316005688 035 $a(EXLCZ)991000000000549736 100 $a20080915d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aChaos, complexity and transport $etheory and applications : proceedings of the CCT '07, Marseille, France, 4-8 June 2007 /$fedited by Cristel Chandre, Xavier Leoncini, George Zaslavsky 205 $a1st ed. 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (376 p.) 300 $aDescription based upon print version of record. 311 $a981-281-879-0 320 $aIncludes bibliographical references. 327 $aPreface; CONTENTS; THEORY; Out-of-Equilibrium Phase Transitions in Mean-Field Hamiltonian Dynamics P.-H. Chavanis, G. De Ninno, D. Fanelli and S. Ruff0; 1. Introduction; 2. On the emergence of quasi-stationary states: Predictions from the Lynden-Bell theory within the Vlasov picture; 3. Properties of the homogeneous Lynden-Bell distribution; 4. Stability of the Lynden-Bell homogeneous phase; 5. The rectangular water-bag initial condition: phase diagram in the (Mo, 27) plane; 6. The general case: Phase diagram in the ( fo , U ) plane; 7. Conclusions; Acknowledgements; References 327 $aStochastic Webs in Multidimensions G. M. Zaslavsky and M. Edelman1. Introduction; 2. Kicked Two Coupled Oscillators; 3. Symmetry of the Stochastic Web; 4. More Coupled Oscillators; 5 . Conclusion; Acknowledgments; References; Chaotic Geodesics J.-L. Thiffeault and K . Kamhawi; 1. Introduction; 2. Coordinate System; 2.1. Separating the Shallow Direction; 2.2. Substrate Coordinates; 3. Equations of Motion; 3.1. Small-parameter Expansion; 3.2. Solution in Terms of Characteristics; 4. Fluid Particle Trajectories; 5 . Lyapunov Exponents and Chaos; 6 . Discussion; References 327 $aA Steady Mixing Flow with No-Slip Boundaries R. S. MacKay1. Introduction; 2. The construction; 3. Mixing; 4. Discussion; Appendix; Acknowledgements; References; Complexity and Entropy in Colliding Particle Systems M. Courbage and S. M. Saberi Fathi; 1. Introduction; 2. Entropy for collision map; 3. Hard disks; 4. Concluding remarks; Appendix A. Collision Map; References; Wave Condensation S. Rica; 1. Introduction; 2. Wave equation; 3. Kinetics Theory and Bose-Einstein condensation; 4. Dynamics before collapse; 5. Kinetics Theory with a condensate; 5.1. Early stage 327 $a5.2. Late stage: The appearance of coherence and the Bogoluibov spectra6. Comments and remarks; References; Transport in Deterministic Ratchets: Periodic Orbit Analysis of a Toy Model R. Artuso, L. Cavallasca and G. Cristadoro; 1. Introduction; 2. Parrondo games and their deterministic version; 3. Periodic orbit theory of deterministic Parrondo games; 4. Periodic hopping framework; 5. Conclusions and perspectives; Acknowledgments; References; Separatrix Chaos: New Approach to the Theoretical lleatment S. M. Soskin, R. Mannella and 0. M. Yevtushenko; 1. Introduction; 2. Basic ideas 327 $a3. Application to the double-separatrix chaos4. Single-separatrix layer: estimates of the largest width; References; Giant Acceleration in Weakly-Perturbed Space-Periodic Hamiltonian Systems M. Yu. Uleysky and D. V. Malcarov; 1. Introduction; References; Local Control of Area-Preserving Maps C. Chandre, M. Vittot and G. Caraolo; 1. Introduction; 2. Derivation of the control term; 3. Numerical examples; 3.1. Application to the standard map; 3.2. Application to the tokamap; References; APPLICATIONS; (1) PLASMA & FLUIDS 327 $aImplications of Topological Complexity and Hamiltonian Chaos in the Edge Magnetic Field of Toroidal Fusion Plasmas 7'. E. Evans 330 $aThis book aims to provide the readers with a wide panorama of different aspects related to Chaos, Complexity and Transport. It consists of a collection of contributions ranging from applied mathematics to experiments, presented during the CCT'07 conference (Marseilles, June 4-8, 2007). The book encompasses different traditional fields of physics and mathematics while trying to keep a common language among the fields, and targets a nonspecialized audience. 606 $aChaotic behavior in systems$vCongresses 606 $aNonlinear theories$vCongresses 606 $aTransport theory$vCongresses 606 $aFluid dynamics$vCongresses 615 0$aChaotic behavior in systems 615 0$aNonlinear theories 615 0$aTransport theory 615 0$aFluid dynamics 676 $a003.857 701 $aChandre$b Cristel$01643685 701 $aZaslavsky$b George M$026214 701 $aLeoncini$b Xavier$01643686 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812494203321 996 $aChaos, complexity and transport$93989087 997 $aUNINA