LEADER 03388nam 22007332 450 001 9910812452503321 005 20160513122738.0 010 $a1-107-22127-7 010 $a1-139-23507-9 010 $a1-283-29857-0 010 $a1-139-12334-3 010 $a9786613298577 010 $a0-511-79383-9 010 $a1-139-11759-9 010 $a1-139-12825-6 010 $a1-139-11323-2 010 $a1-139-11542-1 035 $a(CKB)2550000000055846 035 $a(EBL)774944 035 $a(OCoLC)769341698 035 $a(SSID)ssj0000555021 035 $a(PQKBManifestationID)11356216 035 $a(PQKBTitleCode)TC0000555021 035 $a(PQKBWorkID)10517737 035 $a(PQKB)11279278 035 $a(UkCbUP)CR9780511793837 035 $a(Au-PeEL)EBL774944 035 $a(CaPaEBR)ebr10502696 035 $a(CaONFJC)MIL329857 035 $a(MiAaPQ)EBC774944 035 $a(PPN)261337688 035 $a(EXLCZ)992550000000055846 100 $a20100630d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLectures on profinite topics in group theory /$fBenjamin Klopsch, Nikolay Nikolov, Christopher Voll ; edited by Dan Segal$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (ix, 147 pages) $cdigital, PDF file(s) 225 1 $aLondon Mathematical Society student texts ;$v77 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-18301-4 311 $a1-107-00529-9 320 $aIncludes bibliographical references and index. 327 $aAn introduction to compact p-adic Lie groups / Benjamin Klopsch -- Strong approximation methods / Nikolay Nikolov -- A newcomer's guide to zeta functions of groups and rings / Christopher Voll. 330 $aIn this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory. 410 0$aLondon Mathematical Society student texts ;$v77. 606 $aProfinite groups 606 $aGroup theory 615 0$aProfinite groups. 615 0$aGroup theory. 676 $a512/.2 700 $aKlopsch$b Benjamin$01651957 702 $aNikolov$b Nikolay 702 $aVoll$b Christopher 702 $aSegal$b Daniel$f1947- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910812452503321 996 $aLectures on profinite topics in group theory$94002272 997 $aUNINA