LEADER 03254nam 2200625 450 001 9910812426303321 005 20180613001253.0 010 $a1-4704-0742-6 035 $a(CKB)3360000000464512 035 $a(EBL)3113817 035 $a(SSID)ssj0000889109 035 $a(PQKBManifestationID)11932398 035 $a(PQKBTitleCode)TC0000889109 035 $a(PQKBWorkID)10867756 035 $a(PQKB)10058396 035 $a(MiAaPQ)EBC3113817 035 $a(RPAM)4751043 035 $a(PPN)195412109 035 $a(EXLCZ)993360000000464512 100 $a20140903h19851985 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOn K*(Z/n) and K*(Fq[t]/(t²) /$fJanet E. Aisbett, Emilio Lluis-Puebla, and Victor Snaith ; with an appendix by Christophe Soule? 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1985. 210 4$d©1985 215 $a1 online resource (210 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 57, Number 329 300 $a"September 1985, Volume 57, Number 329 (first of 6 numbers)." 311 $a0-8218-2330-2 320 $aIncludes bibliographical references. 327 $a""A?III.2: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(k)] a??? SL[sub(n)]Z/p), k > 3""""1st Appendix to A?III.1 (case p = 2)""; ""2nd Appendix to A?III.1 (commutator relations, and the SL[sub(n)]Z/p a??? action""; ""A?IV.l: Integral cohomology of ker(SL[sub(n)]Z/p[sup(k)] a??? SL[sub(n)] Z/p)""; ""A?IV.2: SL[sub(n)]Z/p a??? invariants in H4[sup(4)](-; Z) of this kernel""; ""Appendix to A?IV. 1""; ""Appendix to A?IV. 2""; ""A?V.1: K[sub(3)](Z/p[sup(k)]), K[sub(4)](Z/p[sup(k)]) for k an odd prime""; ""A?V.2: K[sub(3)](Z/2[sup(k)])""; ""A?VI.1: Maps induced by reduction SLZ a??? SLZ/p[sup(k)]"" 327 $a""Notation""""Bibliography""; ""On K[sub(3)(IF[sub(pl)][t]/(t[sup(2)]) and K[sub(3)](Z/q),p an odd prime""; ""A?1: Introduction""; ""A?2: Proofs of A?A?1.1/1.2""; ""A?3: Group cohomology calculations""; ""Bibliography""; ""On K[sub(3)]of dual numbers""; ""Introduction a??? statement of results""; ""A?1: Computations of some k*a???invariants""; ""A?2: Computation of H[sup(i)](T[sub(n)]k; H[sup(1)](M[sub(n)]k)) for i = 0, 1 and 2""; ""A?3: R[sub(n)] a??? invariants in H[sup(2)](M[sub(n)]k)""; ""A?4: Estimates of H[sup(1)](T[sub(n)]k; H[sup(2)](M[sub(n)]k))"" 327 $a""Appendix: Homological Stability of the Steinberg Group over the integers""""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 57, Number 329. 606 $aK-theory 606 $aHomology theory 606 $aSpectral sequences (Mathematics) 615 0$aK-theory. 615 0$aHomology theory. 615 0$aSpectral sequences (Mathematics) 676 $a512/.55 700 $aAisbett$b Janet E.$f1951-$01632438 702 $aLluis-Puebla$b Emilio$f1952- 702 $aSnaith$b Victor P$g(Victor Percy),$f1952- 702 $aSoule?$b Christophe 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812426303321 996 $aZ$93971578 997 $aUNINA