LEADER 11085nam 2200589 a 450 001 9910812130103321 005 20240313151543.0 010 $a1-118-52998-7 010 $a1-118-53000-4 010 $a1-299-24217-0 010 $a1-118-52999-5 035 $a(CKB)3230000000207134 035 $a(MiAaPQ)EBC1129736 035 $a(MiAaPQ)EBC4036114 035 $a(Au-PeEL)EBL1129736 035 $a(CaPaEBR)ebr10662599 035 $a(OCoLC)829460545 035 $a(PPN)20474055X 035 $a(EXLCZ)993230000000207134 100 $a20121026d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aCapillary electrophoresis and microchip capillary electrophoresis $eprinciples, applications, and limitations /$fedited by Carlos D. Garci?a, Karin Y. Chumbimuni-Torres, Emanuel Carrilho 205 $a1st ed. 210 $aHoboken, N.J. $cWiley$d2013 215 $axxii, 394 p. $cill 311 $a0-470-57217-5 320 $aIncludes bibliographical references and index. 327 $aCapillary Electrophoresis and Microchip Capillary Electrophoresis: Principles, Applications, and Limitations -- Contents -- Preface -- Acknowledgments -- Contributors -- 1 Critical Evaluation of the Use of Surfactants in Capillary Electrophoresis -- 1.1 Introduction -- 1.2 Surfactants for Wall Coatings -- 1.2.1 Controlling the Electroosmotic Flow -- 1.2.2 Preventing Adsorption to the Capillary -- 1.3 Surfactants as Buffer Additives -- 1.3.1 Micellar Electrokinetic Chromatography -- 1.3.2 Microemulsion Electrokinetic Chromatography -- 1.3.3 Nonaqueous Capillary Electrophoresis with Added Surfactants -- 1.4 Surfactants for Analyte Preconcentration -- 1.4.1 Sweeping -- 1.4.2 Transient Trapping -- 1.4.3 Analyte Focusing by Micelle Collapse -- 1.4.4 Micelle to Solvent Stacking -- 1.4.5 Combinations of Preconcentration Methods -- 1.4.6 Cloud Point Extraction -- 1.5 Surfactants and Detection in CE -- 1.5.1 Mass Spectrometry -- 1.5.2 Electrochemical Detection -- 1.6 Conclusions -- References -- 2 Sample Stacking: A Versatile Approach for Analyte Enrichment in CE and Microchip-CE -- 2.1 Introduction -- 2.2 Isotachophoresis -- 2.3 Chromatography-Based Sample Stacking -- 2.4 Methods Based on Electrophoretic Mobility and Velocity Manipulation (Electrophoretic Methods) -- 2.4.1 Field-Enhanced Sample Stacking (FESS) -- 2.4.2 Field-Enhanced Sample Injection (FESI) -- 2.4.3 Large-Volume Sample Stacking (LVSS) -- 2.4.4 Dynamic pH Junction -- 2.5 Sample Stacking in Pseudo-Stationary Phases -- 2.5.1 Field-Enhanced Sample Stacking -- 2.5.2 Hydrodynamic Injection Techniques -- 2.5.2.1 Normal Stacking Mode (NSM) -- 2.5.2.2 Reverse Electrode Polarity Stacking Mode (REPSM) -- 2.5.2.3 Stacking with Reverse Migrating Micelles (SRMM) -- 2.5.2.4 Stacking Using Reverse Migrating Micelles and a Water Plug (SRW) -- 2.5.2.5 High-Conductivity Sample Stacking (HCSS). 327 $a2.5.3 Electrokinetic Injection Techniques -- 2.5.3.1 Field-Enhanced Sample Injection (FESI-MEKC) -- 2.5.3.2 Field-Enhanced Sample Injection with Reverse Migrating Micelles (FESI-RMM) -- 2.5.4 Sweeping -- 2.5.5 Combined Techniques -- 2.5.5.1 Dynamic pH Junction: Sweeping -- 2.5.5.2 Selective Exhaustive Injection (SEI) -- 2.5.6 New Techniques -- 2.6 Stacking Techniques in Microchips -- 2.7 Concluding Remarks -- References -- 3 Sampling and Quantitative Analysis in Capillary Electrophoresis -- 3.1 Introduction -- 3.2 Injection Techniques in CE -- 3.2.1 Hydrodynamic Sample Injection -- 3.2.1.1 Principle -- 3.2.1.2 Advantages and Performance -- 3.2.1.3 Disadvantages -- 3.2.2 Electrokinetic Sample Injection -- 3.2.2.1 Principle -- 3.2.2.2 Advantages and Performance -- 3.2.2.3 Disadvantages -- 3.2.3 Bias-Free Electrokinetic Injection -- 3.2.4 Extraneous Sample Introduction Accompanying Injections in CE -- 3.2.5 Sample Stacking -- 3.2.5.1 Principle -- 3.2.5.2 Advantages and Performance -- 3.2.5.3 Disadvantages -- 3.2.6 Alternative Batch Sample Injection Techniques -- 3.2.6.1 Rotary-Type Injectors for CE -- 3.2.6.2 Hydrodynamic Sample Splitting as Injection Method for CE -- 3.2.6.3 Electrokinetic Sample Splitting as Injection Method for CE -- 3.2.6.4 Dual-Opposite End Injection in CE -- 3.3 Micromachined/Microchip Injection Devices -- 3.3.1 Droplet Sampler Based on Digital Microfluidics -- 3.3.2 Wire Loop Injection -- 3.4 Automated Flow Sample Injection and Hyphenated Systems -- 3.4.1 Introduction -- 3.4.2 Advantages and Performance -- 3.4.3 Disadvantages -- 3.5 Computerized Sampling and Data Analysis -- 3.6 Sampling in Portable CE Instrumentation -- 3.7 Quantitative Analysis in CE -- 3.7.1 Introduction -- 3.7.2 Quantitative Analysis with HD Injection -- 3.7.3 Quantitative Analysis with EK Injection -- 3.7.4 Validation of the Developed CE Methods. 327 $a3.7.5 Computer Data Treatment in Quantitative Analysis -- 3.8 Conclusions -- References -- 4 Practical Considerations for the Design and Implementation of High-Voltage Power Supplies for Capillary and Microchip Capillary Electrophoresis -- 4.1 Introduction -- 4.1.1 High-Voltage Fundamentals -- 4.1.2 Electroosmotic Flow Control -- 4.1.3 Technical Aspects -- 4.1.4 Construction of Bipolar HVPS from Unipolar HVPS -- 4.1.5 Safety Considerations -- 4.1.6 HVPS Commercially Available -- 4.1.7 Practical Considerations -- 4.1.8 Alternative Sources of HV -- 4.1.9 HVPS Controllers for MCE -- 4.2 High-Voltage Measurement -- 4.3 Concluding Remarks -- References -- 5 Artificial Neural Networks in Capillary Electrophoresis -- 5.1 Introduction -- 5.2 Optimization in CE: From Single Variable Approach Toward Artificial Neural Networks -- 5.2.1 Limitations of "Traditional" Single Variable Approach -- 5.2.2 Multivariate Approach with Experimental Design and Response Surface Modeling -- 5.2.2.1 Experimental Design -- 5.2.2.2 Response Surface Modeling -- 5.3 Artificial Neural Networks in Electromigration Methods -- 5.3.1 Introduction-Basic Principles of ANN -- 5.3.2 Optimization Using a Combination of ED and ANN -- 5.3.2.1 Testing of ED-ANN Algorithm -- 5.3.2.2 Practical Applications of ED-ANN -- 5.3.3 Quantitative CE Analysis and Determination from Overlapped Peaks -- 5.3.3.1 Evaluation of Calibration Plots in CE Using ANN to Increase Precision of Analysis -- 5.3.3.2 ANN in Quantitative CE Analysis from Overlapped Peaks -- 5.3.4 ANN in CEC and MEKC -- 5.3.5 ANN for Peptides Modeling -- 5.3.6 Classification and Fingerprinting -- 5.3.7 Other Applications -- 5.4 Conclusions -- Acknowledgments -- References -- 6 Improving the Separation in Microchip Electrophoresis by Surface Modification -- 6.1 Introduction -- 6.2 Strategies for Improving Separation. 327 $a6.2.1 Selection of an Adequate Technique: ME -- 6.2.2 Microchannel Design -- 6.2.3 Selection of an Appropriate ME Material -- 6.2.4 Optimization of the Working Conditions -- 6.2.5 Surface Modification -- 6.2.5.1 Surface Micro- and Nanostructuring -- 6.2.5.2 Employment of Energy Sources -- 6.2.5.3 Chemical Surface Modification -- 6.3 Chemical Modifiers -- 6.3.1 Surfactants -- 6.3.2 Ionic Liquids -- 6.3.3 Nanoparticles -- 6.3.4 Polymers -- 6.4 Conclusions -- Acknowledgments -- References -- 7 Capillary Electrophoretic Reactor and Microchip Capillary Electrophoretic Reactor: Dissociation Kinetic Analysis Method for "Complexes" Using Capillary Electrophoretic Separation Process -- 7.1 Introduction -- 7.2 Basic Concept of CER -- 7.3 Dissociation Kinetic Analysis of Metal Complexes Using a CER -- 7.3.1 Determination of the Rate Constants of Dissociation of 1:2 Complexes of Al3+ and Ga3+ with an Azo Dye Ligand 2,2'-Dihydroxyazobenzene-5,5'-Disulfonate in a CER -- 7.4 Expanding the Scope of the CER to Measurements of Fast Dissociation Kinetics with a Half-Life from Seconds to Dozens of Seconds: Dissociation Kinetic Analysis of Metal Complexes Using a Microchip Capillary Electrophoretic Reactor (µCER) -- 7.5 Expanding the Scope of the CER to the Measurement of Slow Dissociation Kinetics with a Half-Life of Hours -- 7.5.1 Principle of LS-CER -- 7.5.2 Application of LS-CER to the Ti(IV)-Catechin Complex -- 7.5.3 Application of LS-CER to the Ti(IV)-Tiron Complex -- 7.6 Expanding the Scope of CER to Measurement of the Dissociation Kinetics of Biomolecular Complexes -- 7.6.1 Dissociation Kinetic Analysis of [SSB-ssDNA] Using CER -- 7.7 Conclusions -- References -- 8 Capacitively Coupled Contactless Conductivity Detection (C4D) Applied to Capillary Electrophoresis (CE) and Microchip Electrophoresis (MCE) -- 8.1 Introduction -- 8.2 Theory of C4D. 327 $a8.2.1 Basic Principles of C4D -- 8.2.2 Simulation -- 8.2.3 Basic Equation for Sensitivity -- 8.2.4 Equivalent Circuit of a CE-C4D System -- 8.2.5 Practical Guidelines -- 8.3 C4D Applied to Capillary Electrophoresis -- 8.3.1 Instrumental Aspects in CE -- 8.3.2 Coupling C4D with UV-Vis Photometric Detectors in CE -- 8.3.3 Fundamental Studies in Capillary Electrophoresis Using C4D -- 8.3.4 Fundamental Studies on C4D -- 8.3.5 Applications -- 8.4 C4D Applied to Microchip Capillary Electrophoresis -- 8.4.1 Geometry of the Detection Electrodes -- 8.4.1.1 Embedded Electrodes -- 8.4.1.2 Attached Electrodes -- 8.4.1.3 External Electrodes -- 8.4.2 Applications -- 8.4.2.1 Bioanalytical Applications -- 8.4.2.2 On-Chip Enzymatic Reactions -- 8.4.2.3 Food Analysis -- 8.4.2.4 Explosives and Chemical Warfare Agents -- 8.4.2.5 Other Applications -- 8.5 Concluding Remarks -- Acknowledgments -- References -- 9 Capillary Electrophoresis with Electrochemical Detection -- 9.1 Principles of Electrochemical Detection -- 9.1.1 Amperometric Detection -- 9.1.2 Potentiometric Detection -- 9.1.3 Conductivity Detection -- 9.2 Interfacing Amperometric Detection to Capillary Electrophoresis -- 9.2.1 Off-Column Detection -- 9.2.2 End-Column Detection -- 9.2.3 Use of Multiple Detection Electrodes -- 9.2.4 Pulsed Amperometric Detection -- 9.2.5 Nonaqueous EC Detection -- 9.2.6 Electrode Material -- 9.2.7 Dual Conductivity and Amperometric Detection -- 9.3 Interfacing Electrochemical Detection to Microfluidic Capillary Electrophoresis -- 9.3.1 End-Column Detection -- 9.3.2 Pulsed Amperometric Detection -- 9.3.3 Off-Channel Detection -- 9.3.4 Electrode Material -- 9.3.5 Portable CE and MCE Systems -- 9.3.6 Applications of CE-MCE with AD -- 9.3.7 Future Directions for CE-MCE with EC Detection -- References. 327 $a10 Overcoming Challenges in Using Microchip Electrophoresis for Extended Monitoring Applications. 606 $aCapillary electrophoresis 606 $aMicrotechnique 615 0$aCapillary electrophoresis. 615 0$aMicrotechnique. 676 $a502.8/2 701 $aGarcia$b Carlos D.$f1972-$01621211 701 $aChumbimuni-Torres$b Karin Y$01621212 701 $aCarrilho$b Emanuel$f1965-$01621213 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812130103321 996 $aCapillary electrophoresis and microchip capillary electrophoresis$93954388 997 $aUNINA