LEADER 05612nam 2200757Ia 450 001 9910812033803321 005 20200520144314.0 010 $a9786613642615 010 $a9783527650460 010 $a3527650466 010 $a9781280665684 010 $a1280665688 010 $a9783527650446 010 $a352765044X 010 $a9783527650477 010 $a3527650474 035 $a(CKB)2550000000100551 035 $a(EBL)915631 035 $a(SSID)ssj0000654420 035 $a(PQKBManifestationID)11398959 035 $a(PQKBTitleCode)TC0000654420 035 $a(PQKBWorkID)10661888 035 $a(PQKB)10382288 035 $a(Au-PeEL)EBL915631 035 $a(CaPaEBR)ebr10560661 035 $a(CaONFJC)MIL364261 035 $a(PPN)260291935 035 $a(OCoLC)798928669 035 $a(MiAaPQ)EBC915631 035 $a(Perlego)1000847 035 $a(EXLCZ)992550000000100551 100 $a20120528d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAryl diazonium salts $enew coupling agents in polymer and surface science /$fedited by Mohamed Mehdi Chehimi 205 $a1st ed. 210 $aWeinheim, Germany $cWiley-VCH$d2012 215 $a1 online resource (359 p.) 300 $aDescription based upon print version of record. 311 08$a9783527329984 311 08$a3527329986 320 $aIncludes bibliographical references and index. 327 $aAryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science; Contents; Preface; List of Contributors; 1: Attachment of Organic Layers to Materials Surfaces by Reduction of Diazonium Salts; 1.1: A Brief Survey of the Chemistry and Electrochemistry of Diazonium Salts; 1.2: The Different Methods that Permit Grafting of Diazonium Salts; 1.2.1: Electrochemistry; 1.2.2: Reducing Substrate, Homolytic Dediazonation, Reaction with the Substrate; 1.2.3: Reducing Reagent; 1.2.4: Neutral and Basic Media; 1.2.5: Ultrasonication; 1.2.6: Heating and Microwave; 1.2.7: Mechanical Grafting 327 $a1.2.8: Photochemistry1.3: The Different Substrates, Diazonium Salts, and Solvents that Can Be Used; 1.3.1: Substrates; 1.3.2: Diazonium Salts; 1.3.3: Solvents; 1.4: Evidence for the Presence of a Bond between the Substrate and the Organic Layer; 1.4.1: Stability of the Layer; 1.4.2: Spectroscopic Evidence for a Bond; 1.5: From Monolayers to Multilayers; 1.5.1: Monolayers; 1.5.2: Layers of Medium Thickness; 1.5.2.1 Thick Layers; 1.6: Structure and Formation of Multilayers; 1.6.1: Chemical Structure; 1.6.2: The Spatial Structure of the Layers; 1.6.3: Compactness of the Layers 327 $a1.6.4: Swelling of the Layer1.6.5: Electron Transfer through the Layers; 1.6.6: The Formation Mechanism of Multilayers; 1.7: Conclusion; References; 2: Aryl-Surface Bonding: A Density Functional Theory (DFT)Simulation Approach; 2.1: Introduction; 2.2: Density Functional Theory; 2.3: Bonding between Aryl and Various Substrates; 2.3.1: On Graphite/Graphene; 2.3.1.1 On the Basal Plane; 2.3.1.2 On the Edges of Graphene; 2.3.2: On Carbon Nanotubes; 2.3.3: On Metal Surfaces; 2.4: Summary and Outlook; Acknowledgments; References; 3: Patterned Molecular Layers on Surfaces 327 $a3.1: Methods Based on Scanning Probe Lithography3.1.1: AFM; 3.1.2: SECM; 3.1.3: Spotting; 3.2: Methods Based on Soft Lithography; 3.2.1: Printing; 3.2.2: Molds; 3.2.3: Nanosphere Lithography; 3.3: Methods Based on Lithography; 3.4: Methods Based on Surface-Directed Patterning; 3.4.1: Modification of Si Surfaces; 3.4.2: Modified Electrode Arrays; 3.5: Summary and Conclusions; References; 4: Analytical Methods for the Characterization of Aryl Layers; 4.1: Introduction; 4.2: Scanning Probe Microscopies; 4.3: UV-VIS Spectroscopy: Transmission, Reflection, and Ellipsometry; 4.4: IR Spectroscopy 327 $a4.4.1: Transmission Spectroscopy4.4.2: Reflection Spectroscopy; 4.4.3: Infrared Spectroscopic Ellipsometry (IRSE); 4.4.4: IRSE Surface Characterization; 4.4.5: In Situ IR Spectroscopy: ATR and IRSE; 4.5: Raman Spectroscopy and Surface-Enhanced Raman Scattering (SERS); 4.6: X-ray Photoelectron Spectroscopy (XPS); 4.7: X-ray Standing Waves (XSW); 4.8: Rutherford Backscattering; 4.9: Time of Flight Secondary Ion Mass Spectroscopy; 4.10: Electrochemistry; 4.11: Contact Angle Measurements; 4.12: Conclusion; References; 5: Modification of Nano-objects by Aryl Diazonium Salts; 5.1: Introduction 327 $a5.2: Electrochemical Modification of Nano-objects by Reduction of Diazonium Salts 330 $aDiazonium compounds are employed as a new class of coupling agents to link polymers, biomacromolecules, and other species (e. g. metallic nanoparticles) to the surface of materials. The resulting high performance materials show improved chemical and physical properties and find widespread applications. The advantage of aryl diazonium salts compared to other surface modifiers lies in their ease of preparation, rapid (electro)reduction, large choice of reactive functional groups, and strong aryl-surface covalent bonding.This unique book summarizes the current knowledge of the surface and 606 $aDiazo compounds 606 $aPolymers$xSurfaces 615 0$aDiazo compounds. 615 0$aPolymers$xSurfaces. 676 $a541.33 676 $a547.86 701 $aChehimi$b Mohamed Mehdi$01668247 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812033803321 996 $aAryl diazonium salts$94028740 997 $aUNINA LEADER 02934nam0 22005773i 450 001 VAN00290987 005 20260129021557.969 017 70$2N$a9789401118088 100 $a20250408d1993 |0itac50 ba 101 $aeng 102 $aNL 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aAsymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations$fby I. T. Kiguradze and T. A. Chanturia 210 $aDordrecht$cSpringer$cKluwer$d1993 215 $axiv, 331 p.$d24 cm 300 $aTradotto dal russo 410 1$1001VAN00024456$12001 $aMathematics and its applications. Soviet series$1210 $aDordrecht$cReidel ; [poi] Kluwer$v89 500 1$3VAN00290990$aAsimptoticheskiye svoystva resheniy neavtonomnykh obyknovennykh differentsial'nykh uravneniy$94350512 606 $a34-XX$xOrdinary differential equations [MSC 2020]$3VANC021251$2MF 606 $a34A30$xLinear ordinary differential equations and systems, general [MSC 2020]$3VANC022393$2MF 606 $a34A34$xNonlinear ordinary differential equations and systems, general theory [MSC 2020]$3VANC024338$2MF 606 $a34C05$xTopological structure of integral curves, singular points, limit cycles of ordinary differential equations [MSC 2020]$3VANC022914$2MF 606 $a34C10$xOscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equation [MSC 2020]$3VANC025102$2MF 606 $a34C11$xGrowth and boundedness of solutions to ordinary differential equation [MSC 2020]$3VANC024609$2MF 606 $a34E05$xAsymptotic expansions of solutions to ordinary differential equation [MSC 2020]$3VANC022663$2MF 610 $aAddition$9KW:K 610 $aBoundary Element Methods$9KW:K 610 $aClassification$9KW:K 610 $aDevelopment$9KW:K 610 $aDifferential equations$9KW:K 610 $aEquations$9KW:K 610 $aForms$9KW:K 610 $aOrdinary Differential Equations$9KW:K 610 $aReviews$9KW:K 610 $aeXist$9KW:K 620 $aNL$dDordrecht$3VANL000068 700 1$aKiguradze$bIvan T.$3VANV246224$01803453 701 1$aChanturia$bTeimuraz A.$3VANV246225$01803454 712 $aKluwer $3VANV108116$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20260130$gRICA 856 4 $uhttps://doi.org/10.1007/978-94-011-1808-8$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00290987 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 11373 $e08eMF11373 20250611 996 $aAsimptoticheskiye svoystva resheniy neavtonomnykh obyknovennykh differentsial'nykh uravneniy$94350512 997 $aUNICAMPANIA