LEADER 05309nam 2200637 450 001 9910812027603321 005 20230707220010.0 010 $a1-119-08137-8 010 $a1-119-08135-1 010 $a1-119-08133-5 035 $a(CKB)3710000000361274 035 $a(EBL)1895370 035 $a(SSID)ssj0001467476 035 $a(PQKBManifestationID)11815491 035 $a(PQKBTitleCode)TC0001467476 035 $a(PQKBWorkID)11514539 035 $a(PQKB)11646160 035 $a(MiAaPQ)EBC1895370 035 $a(Au-PeEL)EBL1895370 035 $a(CaPaEBR)ebr11025869 035 $a(CaONFJC)MIL770167 035 $a(OCoLC)904405333 035 $a(EXLCZ)993710000000361274 100 $a20150314h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAnalysis and design of multicell DC/CD converters using vectorized models /$fThierry Meynard 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2015. 210 4$dİ2015 215 $a1 online resource (160 p.) 225 1 $aFocus Series,$x2051-249X 300 $aDescription based upon print version of record. 311 $a1-84821-800-1 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; 1: General Properties of Multilevel Converters; 1.1. Time-domain: multilevel waveform and apparent switching frequency; 1.2. Frequency domain: harmonic cancellation; 1.3. Transient response; 1.4. Conclusion; 2: Topologies of Multilevel DC/DC Converters; 2.1. Series connection; 2.1.1. Direct series connection with isolated sources; 2.1.2. Flying capacitor; 2.2. Parallel connection; 2.2.1. Interleaved choppers with star-connected inductors; 2.2.2. Interleaved choppers with InterCell Transformers (ICTs); 2.3. Series-parallel connection 327 $a3: Concept of Vectorization in PLECS3.1. Vectorized components; 3.2. Star-connection block and parallel multicell converter; 3.3. Series connection block and series multicell converter; 3.4. Generalized multicell commutation cell; 3.5. Practice; 3.5.1. How to?; 3.5.2. Basic blocks; 4: Vectorized Modulator for Multilevel Choppers; 4.1. General principle; 4.2. xZOH: equalizing multisampler for multilevel choppers; 4.2.1. Control as the main source of perturbation; 4.2.2. Handling duty cycle variation; 4.2.2.1. An exact solution for unmodulated signals; 4.2.2.2. Accounting for switching 327 $a4.2.2.3. Handling fast transients (at the sampling frequency)4.2.2.4. Handling emergency transients (instantaneous and asynchronous); 4.2.3. Frequency response of the equalizing sampler and modulator; 4.3. Practice; 5: Voltage Balance in Series Multilevel Converters; 5.1. Basic principles; 5.2. Linear circuits; 5.2.1. Internal balancers; 5.2.2. External balance boosters; 5.2.3. Pros and cons of internal/external balance boosters; 5.3. Nonlinear variants; 5.3.1. Internal balance boosters; 5.3.2. External balance boosters; 5.4. Loss-based design; 5.4.1. Introduction 327 $a5.4.2. Internal balance boosters5.4.3. External balance boosters; 5.5. Vectorized models of balance boosters; 6: Filter Design; 6.1. Requirements; 6.1.1. Steady state: current ripple, voltage ripple and standards; 6.1.2. Transients; 6.1.3. Extra design constraints; 6.2. Design process; 7: Design of Magnetic Components for Multilevel Choppers ; 7.1. Requirements and problem formulation; 7.2. Area product; 7.2.1. Low frequency - low ripple formulation for filtering inductors; 7.2.2. General formulation for filtering inductors; 7.2.3. Application to inductors for interleaved converters 327 $a7.2.4. Extension to InterCell Transformers7.3. Optimal area product of magnetic components for interleaved converters; 7.3.1. Optimal area product for inductors; 7.3.2. Optimal area product for InterCell Transformers; 7.4. Weight-optimal dimensions for a given area product; 7.4.1. For inductors; 7.4.2. For InterCell Transformers; 7.4.2.1. Flux and section of horizontal legs; 7.4.2.2. Determination of optimal dimensions; 7.5. Volume-optimal dimensions for a given area product; 7.6. Number of turns and air gap; 7.7. Accounting for current overload 327 $a7.8. Optimal phase sequence for InterCell Transformers 330 $aIn recent years, multilevel topologies have been introduced to allow static converters of electrical energy to address medium voltage (series connection) or high current (parallel connection). The new degrees of freedom provided by these topologies are a potential source of improvement, but they also make the design process more complex. The author of this book shows how the concepts of vectorization and design masks can be used to help the designer in comparing different designs and making the right choices. The book addresses series and parallel multicell conversion directly and the conce 410 0$aFocus series (London, England) 606 $aDC-to-DC converters 615 0$aDC-to-DC converters. 676 $a621.3132 700 $aMeynard$b Thierry$0853285 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812027603321 996 $aAnalysis and design of multicell DC$93989210 997 $aUNINA