LEADER 01167nam--2200397---450- 001 990003310960203316 005 20091006094125.0 010 $a88-8309-005-5 035 $a000331096 035 $aUSA01000331096 035 $a(ALEPH)000331096USA01 035 $a000331096 100 $a20090915d1999----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aSilenzi$estorie dal mondo arabo$fIbrahim'Abd al-Magid ... [et al.]$ga cura di Isabella Camera d'Afflitto 210 $aCava de' Tirreni$cAvagliano$d[1999] 215 $a144 p.$d2 cm 225 2 $a<> stellato 410 0$12001$aLo stellato 454 1$12001 461 1$1001-------$12001 606 $aLetteratura maghrebina $xAntologie 676 $a892.736 08 700 1$a'ABD al-MAGID,$bIbrahim$0479941 702 1$aCAMERA D'AFFLITTO,$bIsabella 801 0$aIT$bsalbc$gISBD 912 $a990003310960203316 951 $aII.10.D.7$b9215 DSLL 959 $aBK 969 $aDSLL 979 $aDSLL$b90$c20090915$lUSA01$h1151 979 $aDSLL$b90$c20091006$lUSA01$h0941 996 $aSilenzi$91122166 997 $aUNISA LEADER 08202nam 2201885 450 001 9910811911703321 005 20230828210151.0 010 $a1-4008-6525-5 024 7 $a10.1515/9781400865253 035 $a(CKB)3710000000222324 035 $a(EBL)1756202 035 $a(OCoLC)888743519 035 $a(SSID)ssj0001332756 035 $a(PQKBManifestationID)11723725 035 $a(PQKBTitleCode)TC0001332756 035 $a(PQKBWorkID)11376165 035 $a(PQKB)10616292 035 $a(MiAaPQ)EBC1756202 035 $a(DE-B1597)447950 035 $a(OCoLC)651974127 035 $a(OCoLC)979583973 035 $a(DE-B1597)9781400865253 035 $a(Au-PeEL)EBL1756202 035 $a(CaPaEBR)ebr10910146 035 $a(CaONFJC)MIL637581 035 $a(EXLCZ)993710000000222324 100 $a20140829h20062006 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 00$aDiffusion, quantum theory, and radically elementary mathematics /$fedited by William G. Faris 210 1$aPrinceton, New Jersey ;$aOxfordshire, England :$cPrinceton University Press,$d2006. 210 4$d©2006 215 $a1 online resource (257 p.) 225 1 $aMathematical Notes ;$v47 300 $aDescription based upon print version of record. 311 0 $a1-322-06330-3 311 0 $a0-691-12545-7 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$tPreface --$tChapter One. Introduction: Diffusive Motion and Where It Leads /$rFaris, William G. --$tChapter Two. Hypercontractivity, Logarithmic Sobolev Inequalities, and Applications: A Survey of Surveys /$rGross, Leonard --$tChapter Three. Ed Nelson's Work in Quantum Theory /$rSimon, Barry --$tChapter Four Symanzik, Nelson, and Self-Avoiding Walk /$rBrydges, David C. --$tChapter Five. Stochastic Mechanics: A Look Back and a Look Ahead /$rCarlen, Eric --$tChapter Six. Current Trends in Optimal Transportation: A Tribute to Ed Nelson /$rVillani, Cédric --$tChapter Seven. Internal Set Theory and Infinitesimal Random Walks /$rLawler, Gregory F. --$tChapter Eight. Nelson's Work on Logic and Foundations and Other Reflections on the Foundations of Mathematics /$rBuss, Samuel R. --$tChapter Nine. Some Musical Groups: Selected Applications of Group Theory in Music /$rHook, Julian --$tChapter Ten. Afterword /$rNelson, Edward --$tAppendix A. Publications by Edward Nelson --$tIndex 330 $aDiffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein's work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book's inspiration is Princeton University mathematics professor Edward Nelson's influential work in probability, functional analysis, nonstandard analysis, stochastic mechanics, and logic. The book can be used as a tutorial or reference, or read for pleasure by anyone interested in the role of mathematics in science. Because of the application of diffusive motion to quantum theory, it will interest physicists as well as mathematicians. The introductory chapter describes the interrelationships between the various themes, many of which were first brought to light by Edward Nelson. In his writing and conversation, Nelson has always emphasized and relished the human aspect of mathematical endeavor. In his intellectual world, there is no sharp boundary between the mathematical, the cultural, and the spiritual. It is fitting that the final chapter provides a mathematical perspective on musical theory, one that reveals an unexpected connection with some of the book's main themes. 410 0$aMathematical notes (Princeton University Press) ;$v47. 606 $aMathematical physics 606 $aDiffusion 606 $aQuantum theory 610 $aAffine space. 610 $aAlgebra. 610 $aAxiom. 610 $aBell's theorem. 610 $aBrownian motion. 610 $aCentral limit theorem. 610 $aClassical mathematics. 610 $aClassical mechanics. 610 $aClifford algebra. 610 $aCombinatorial proof. 610 $aCommutative property. 610 $aConstructive quantum field theory. 610 $aContinuum hypothesis. 610 $aDavid Hilbert. 610 $aDimension (vector space). 610 $aDiscrete mathematics. 610 $aDistribution (mathematics). 610 $aEigenfunction. 610 $aEquation. 610 $aEuclidean space. 610 $aExperimental mathematics. 610 $aFermi?Dirac statistics. 610 $aFeynman?Kac formula. 610 $aFirst-order logic. 610 $aFokker?Planck equation. 610 $aFoundations of mathematics. 610 $aFractal dimension. 610 $aGaussian process. 610 $aGirsanov theorem. 610 $aGödel's incompleteness theorems. 610 $aHilbert space. 610 $aHilbert's program. 610 $aHolomorphic function. 610 $aInfinitesimal. 610 $aInteger. 610 $aInternal set theory. 610 $aInterval (mathematics). 610 $aLimit (mathematics). 610 $aMathematical induction. 610 $aMathematical optimization. 610 $aMathematical physics. 610 $aMathematical proof. 610 $aMathematician. 610 $aMathematics. 610 $aMeasurable function. 610 $aMeasure (mathematics). 610 $aMinkowski space. 610 $aNatural number. 610 $aNeo-Riemannian theory. 610 $aNon-standard analysis. 610 $aNumber theory. 610 $aOperator algebra. 610 $aOrnstein?Uhlenbeck process. 610 $aOrthonormal basis. 610 $aPerturbation theory (quantum mechanics). 610 $aPhilosophy of mathematics. 610 $aPredicate (mathematical logic). 610 $aProbability measure. 610 $aProbability space. 610 $aProbability theory. 610 $aProbability. 610 $aProjection (linear algebra). 610 $aPure mathematics. 610 $aPythagorean theorem. 610 $aQuantum field theory. 610 $aQuantum fluctuation. 610 $aQuantum gravity. 610 $aQuantum harmonic oscillator. 610 $aQuantum mechanics. 610 $aQuantum system. 610 $aQuantum teleportation. 610 $aRandom variable. 610 $aReal number. 610 $aRenormalization group. 610 $aRenormalization. 610 $aRiemann mapping theorem. 610 $aRiemann surface. 610 $aRiemannian geometry. 610 $aRiemannian manifold. 610 $aSchrödinger equation. 610 $aScientific notation. 610 $aSet (mathematics). 610 $aSign (mathematics). 610 $aSobolev inequality. 610 $aSpecial relativity. 610 $aSpectral theorem. 610 $aSpin (physics). 610 $aStatistical mechanics. 610 $aStochastic calculus. 610 $aStochastic differential equation. 610 $aTensor algebra. 610 $aTheorem. 610 $aTheoretical physics. 610 $aTheory. 610 $aTuring machine. 610 $aVariable (mathematics). 610 $aVon Neumann algebra. 610 $aWiener process. 610 $aWightman axioms. 610 $aZermelo?Fraenkel set theory. 615 0$aMathematical physics. 615 0$aDiffusion. 615 0$aQuantum theory. 676 $a530.15 686 $a33.65$2bcl 702 $aFaris$b William G.$f1939- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811911703321 996 $aDiffusion, quantum theory, and radically elementary mathematics$91222080 997 $aUNINA LEADER 01277nam0 22002771i 450 001 UON00316612 005 20231205104121.241 100 $a20081017d1950 |0itac50 ba 101 $afre 102 $aFR 105 $a||||a ||||| 200 1 $aContribution a l'étude de l'art du Gandhara$eEssai de bibliographie analytique et critique des ouvrages parus de 1922 ŕ 1949$fHenri Deydier$gPréface de René Grousset 210 $aParis$cLibrairie d'Amerique et d'Orient Adrien Maisonneuve$d1950 215 $aXXVIII, 327 p., 4 c. ripieg. con velina$d25 cm 606 $aARTE INDIANA$xGANDHARA$xBibliografia$3UONC016465$2FI 620 $aFR$dParis$3UONL002984 686 $aSI IX C$cSUBCONT. INDIANO - ARTE - SCULTURA$2A 700 1$aDEYDIER$bHenri$3UONV180746$0698197 702 1$aGROUSSET$bRené$3UONV005022 712 $aLibrairie d'Amerique et d'Orient Adrien Maisonneuve$3UONV246049$4650 801 $aIT$bSOL$c20250711$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00316612 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI SI IX C 038 $eSI ARC235 7 038 996 $aContribution a l'étude de l'art du Gandhara$91374937 997 $aUNIOR LEADER 03799nam 22005415 450 001 9910254307303321 005 20200703182432.0 010 $a3-319-65945-6 024 7 $a10.1007/978-3-319-65945-9 035 $a(CKB)3710000001631073 035 $a(DE-He213)978-3-319-65945-9 035 $a(MiAaPQ)EBC6315577 035 $a(MiAaPQ)EBC5578935 035 $a(Au-PeEL)EBL5578935 035 $a(OCoLC)1003640942 035 $a(PPN)203853881 035 $a(EXLCZ)993710000001631073 100 $a20170830d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Topics in Relation Algebras $eRelation Algebras, Volume 2 /$fby Steven Givant 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XIX, 605 p.) 311 $a3-319-65944-8 320 $aIncludes bibliographical references and index. 327 $aPreface -- Introduction -- 14. Canonical Extensions -- 15. Completions -- 16. Representations -- 17. Representation Theorems -- 18. Varieties of Relation Algebras -- 19. Atom Structures -- Epilogue -- References -- Index. . 330 $aThe second volume of a pair that charts relation algebras from novice to expert level, this text brings the well-grounded reader to the frontiers of research. Building on the foundations established in the preceding Introduction to Relation Algebras, this volume advances the reader into the deeper mathematical results of the past few decades. Such material offers an ideal preparation for research in relation algebras and Boolean algebras with operators. Arranged in a modular fashion, this text offers the opportunity to explore any of several areas in detail; topics include canonical extensions, completions, representations, varieties, and atom structures. Each chapter offers a complete account of one such avenue of development, including a historical section and substantial number of exercises. The clarity of exposition and comprehensive nature of each module make this an ideal text for the independent reader entering the field, while researchers will value it as a reference for years to come. Collecting, curating, and illuminating over 75 years of progress since Tarski's seminal work in 1941, this textbook in two volumes offers a landmark, unified treatment of the increasingly relevant field of relation algebras. Clear and insightful prose guides the reader through material previously only available in scattered, highly-technical journal articles. Students and experts alike will appreciate the work as both a textbook and invaluable reference for the community. Note that this volume contains numerous, essential references to the previous volume, Introduction to Relation Algebras. The reader is strongly encouraged to secure at least electronic access to the first book in order to make use of the second. . 606 $aLogic, Symbolic and mathematical 606 $aAlgebra 606 $aMathematical Logic and Foundations$3https://scigraph.springernature.com/ontologies/product-market-codes/M24005 606 $aGeneral Algebraic Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/M1106X 615 0$aLogic, Symbolic and mathematical. 615 0$aAlgebra. 615 14$aMathematical Logic and Foundations. 615 24$aGeneral Algebraic Systems. 676 $a511.324 700 $aGivant$b Steven$4aut$4http://id.loc.gov/vocabulary/relators/aut$059680 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254307303321 996 $aAdvanced Topics in Relation Algebras$91734882 997 $aUNINA