LEADER 03054nam 2200565 450 001 9910811893003321 005 20170821171955.0 010 $a1-4704-0872-4 035 $a(CKB)3360000000464630 035 $a(EBL)3113856 035 $a(SSID)ssj0000976575 035 $a(PQKBManifestationID)11542580 035 $a(PQKBTitleCode)TC0000976575 035 $a(PQKBWorkID)11035283 035 $a(PQKB)10424600 035 $a(MiAaPQ)EBC3113856 035 $a(RPAM)3904518 035 $a(PPN)195413296 035 $a(EXLCZ)993360000000464630 100 $a20140904h19911991 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA sufficient criterion for a cone to be area-minimizing /$fGary R. Lawlor 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1991. 210 4$dİ1991 215 $a1 online resource (121 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 91, Number 446 300 $a"May 1991, volume 91, number 446 (third of 4 numbers)." 311 $a0-8218-2512-7 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""Abstract""; ""Acknowledgements""; ""Introduction""; ""Chapter 1: A Minimization Test for Cones""; ""1.1 The retraction II""; ""1.2 The curvature criterion""; ""1.3 Simplifications""; ""1.4 Table of vanishing angles""; ""Chapter 2: Calibrations""; ""2.1 Preliminary definitions""; ""2.2 Zero curvature""; ""2.3 Nonzero curvature""; ""2.4 Relationships between Chapter 1 and Chapter 2""; ""Chapter 3: The Differential Equation""; ""3.1 Overview""; ""3.2 Zero curvature""; ""3.3 General curvature""; ""3.4 Numerical analysis of the differential equation"" 327 $a""Chapter 4: Cones for Which the Criterion is Necessary as Well as Sufficient""""4.1 Introduction""; ""4.2 General setup""; ""4.3 Codimension 1""; ""4.4 Higher codimension""; ""Chapter 5: Examples of Area-minimizing Cones""; ""5.1 Cones over products of spheres""; ""5.2 Cones over unorientable manifolds""; ""5.3 Unions of planes""; ""5.4 Cones over compact matrix groups""; ""5.5 Codimension 1 cones over orbits of group actions""; ""Chapter 6: Some Perturbation Results""; ""6.1 The strict curvature criterion""; ""6.2 Calibration of a nearby minimal graph"" 327 $a""6.3 Minimal surfaces in a neighborhood of a singularity""""6.4 A persistent singularity in a minimizing surface""; ""Chapter 7: Open Questions""; ""Appendix""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 91, Number 446. 606 $aGeometric measure theory 606 $aCone 615 0$aGeometric measure theory. 615 0$aCone. 676 $a515/.42 700 $aLawlor$b Gary R$g(Gary Reid),$f1961-$01607413 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811893003321 996 $aA sufficient criterion for a cone to be area-minimizing$93933675 997 $aUNINA