LEADER 01234nam0-2200349---450 001 990008464870403321 005 20220623112626.0 010 $a88-7686-730-9 035 $a000846487 100 $a20070207d1996----km-y0itay50------ba 101 0 $aita$aeng 102 $aIT 105 $aa---a---001yy 200 1 $a<>Mausoleo di Galla Placidia a Ravenna$dThe Mausoleum of Galla Placidia a Ravenna$fa cura di/ edited by Clementina Rizzardi$gscritti di/ text by Patrizia Angiolini Martinelli...[et al.]$hfotografie di / photographs by Paolo Robino 210 $aModena$cF.C.Panini$d1996 215 $a257 p.$cill.$d32 cm 225 1 $aMirabilia Italiae$v4 510 1 $a<>Mausoleum of Galla Placidia a Ravenna 610 0 $aRavenna$aMausoleo di Galla Placidia 676 $a726.8094$v22$zita 702 1$aRizzardi,$bClementina 702 1$aAngiolini Martinelli,$bPatrizia 702 1$aRobino,$bPaolo$f<1952- > 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008464870403321 952 $a720 MIRABILIA ITALIAE 04$bBibl.48726$fFLFBC 952 $aART.FI C 151$b9131$fFARBC 959 $aFLFBC 959 $aFARBC 996 $aMausoleo di Galla Placidia a Ravenna$9350889 997 $aUNINA LEADER 03228nam 2200577 450 001 9910811889403321 005 20170822144357.0 010 $a1-4704-0208-4 035 $a(CKB)3360000000464803 035 $a(EBL)3114543 035 $a(SSID)ssj0000889282 035 $a(PQKBManifestationID)11482815 035 $a(PQKBTitleCode)TC0000889282 035 $a(PQKBWorkID)10876593 035 $a(PQKB)10964761 035 $a(MiAaPQ)EBC3114543 035 $a(RPAM)1181647 035 $a(PPN)195415035 035 $a(EXLCZ)993360000000464803 100 $a19970716h19971997 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTwo classes of Riemannian manifolds whose geodesic flows are integrable /$fKazuyoshi Kiyohara 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1997] 210 4$dİ1997 215 $a1 online resource (159 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 619 300 $a"November 1997, volume 130, number 619 (third of 4 numbers)." 311 $a0-8218-0640-8 320 $aIncludes bibliographical references (pages 142-143). 327 $a""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One"" 327 $a""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]I??-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data"" 327 $a""3. Structure of M a??? M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 619. 606 $aGeodesic flows 606 $aRiemannian manifolds 615 0$aGeodesic flows. 615 0$aRiemannian manifolds. 676 $a510 s 676 $a516.3/73 700 $aKiyohara$b Kazuyoshi$f1954-$01607390 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811889403321 996 $aTwo classes of Riemannian manifolds whose geodesic flows are integrable$93933640 997 $aUNINA