LEADER 02161nam 2200541 450 001 9910811755103321 005 20170822144218.0 010 $a0-8218-9203-7 035 $a(CKB)3360000000464093 035 $a(EBL)3114542 035 $a(SSID)ssj0000889182 035 $a(PQKBManifestationID)11483298 035 $a(PQKBTitleCode)TC0000889182 035 $a(PQKBWorkID)10876186 035 $a(PQKB)10889460 035 $a(MiAaPQ)EBC3114542 035 $a(RPAM)17434054 035 $a(PPN)195419227 035 $a(EXLCZ)993360000000464093 100 $a20150416h20122012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe reflective Lorentzian lattices of rank 3 /$fDaniel Allcock 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2012. 210 4$dİ2012 215 $a1 online resource (108 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 220, Number 1033 300 $aNovember 2012, Volume 220, Number 1033 (first of 4 numbers)." 311 $a0-8218-6911-6 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Abstract""; ""Introduction""; ""Chapter 1. Background""; ""1.1. Background""; ""1.2. The Conway-Sloane genus symbol""; ""Chapter 2. The Classification Theorem""; ""2.1. The shape of a hyperbolic polygon""; ""2.2. The shape of a 2-dimensional Weyl chamber""; ""2.3. Corner symbols""; ""2.4. The classification theorem""; ""Chapter 3. The Reflective Lattices""; ""3.1. How to read the table""; ""3.2. Table of rank 3 reflective Lorentzian lattices""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 220, Number 1033. 606 $aLattice theory 606 $aAutomorphisms 615 0$aLattice theory. 615 0$aAutomorphisms. 676 $a511.3/3 700 $aAllcock$b Daniel$f1969-$01672401 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811755103321 996 $aThe reflective Lorentzian lattices of rank 3$94109612 997 $aUNINA