LEADER 01953nam 2200493 450 001 9910811751903321 005 20170918220600.0 010 $a0-8218-9898-1 035 $a(CKB)3360000000464022 035 $a(EBL)3113713 035 $a(SSID)ssj0000973526 035 $a(PQKBManifestationID)11552376 035 $a(PQKBTitleCode)TC0000973526 035 $a(PQKBWorkID)10984293 035 $a(PQKB)10190779 035 $a(MiAaPQ)EBC3113713 035 $a(RPAM)0000000739 035 $a(PPN)195409922 035 $a(EXLCZ)993360000000464022 100 $a20720316d1971 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFourier analysis on matrix space /$fby Stephen S. Gelbart 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1971. 215 $a1 online resource (83 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 108 300 $aDescription based upon print version of record. 311 $a0-8218-1808-2 320 $aBibliography: pages 76-77. 327 $a""Table of Contents""; ""Chapter I. Introduction""; ""Chapter II. Problem A for GL(n, 1R)""; ""2.1 The representation theory of GL(2,1R)""; ""2.2 The Plancherel formula for GL(2,1R)""; ""2. 3 Solution to Problem A for M(2,1R)""; ""2.4 The representation theory and main theorem for GL(n,1R)""; ""Appendix""; ""Chapter III. GL(n,k)""; ""3.1 Analysis on M(l,k)""; ""3.2 Invariant factors and gamma functions""; ""3.3 M(n,k)""; ""Chapter IV. Zeta-functions on M(n, 1R)"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 108. 606 $aFourier series 615 0$aFourier series. 700 $aGelbart$b Stephen S.$045743 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811751903321 996 $aFourier analysis on matrix space$94109582 997 $aUNINA