LEADER 02654nam 2200637 450 001 9910811629603321 005 20170822144319.0 010 $a1-4704-0581-4 035 $a(CKB)3360000000465151 035 $a(EBL)3114192 035 $a(SSID)ssj0000889048 035 $a(PQKBManifestationID)11479154 035 $a(PQKBTitleCode)TC0000889048 035 $a(PQKBWorkID)10876003 035 $a(PQKB)10596544 035 $a(MiAaPQ)EBC3114192 035 $a(RPAM)16182524 035 $a(PPN)195418573 035 $a(EXLCZ)993360000000465151 100 $a20150417h20102010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLyapunov exponents and invariant manifolds for random dynamical systems in a Banach space /$fZeng Lian, Kening Lu 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2010. 210 4$dİ2010 215 $a1 online resource (106 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 206, Number 967 300 $a"Volume 206, Number 967 (first of 4 numbers)." 311 $a0-8218-4656-6 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Acknowledgement""; ""Chapter 2. Random Dynamical Systems and Measures of Noncompactness""; ""Chapter 3. Main Results""; ""Chapter 4. Volume Function in Banach Spaces""; ""Chapter 5. Gap and Distance Between Closed Linear Subspaces""; ""Chapter 6. Lyapunov Exponents and Oseledets Spaces""; ""Chapter 7. Measurable Random Invariant Complementary Subspaces""; ""Chapter 8. Proof of Multiplicative Ergodic Theorem""; ""Chapter 9. Stable and Unstable Manifolds""; ""Appendix A. Subadditive Ergodic Theorem""; ""Appendix B. Non-ergodic Case"" 327 $a""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 206, Number 967. 606 $aRandom dynamical systems 606 $aLyapunov exponents 606 $aErgodic theory 606 $aInvariant manifolds 606 $aBanach spaces 615 0$aRandom dynamical systems. 615 0$aLyapunov exponents. 615 0$aErgodic theory. 615 0$aInvariant manifolds. 615 0$aBanach spaces. 676 $a515/.39 700 $aLian$b Zeng$f1980-$01622162 701 $aLu$b Kening$f1962-$01622163 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811629603321 996 $aLyapunov exponents and invariant manifolds for random dynamical systems in a Banach space$93955853 997 $aUNINA