LEADER 04266nam 2200505 450 001 9910811627303321 005 20230120002426.0 010 $a0-08-101900-9 035 $a(CKB)3710000000654134 035 $a(EBL)4514145 035 $a(MiAaPQ)EBC4514145 035 $a(EXLCZ)993710000000654134 100 $a20160518h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aFundamentals of applied reservoir engineering $eappraisal, economics and optimization /$fRichard Wheaton 210 1$aAmsterdam, [Netherlands] :$cGulf Professional Publishing,$d2016. 210 4$dİ2016 215 $a1 online resource (250 p.) 300 $aIncludes index. 311 $a0-08-101019-2 327 $aFront Cover; FUNDAMENTALS OF APPLIED RESERVOIR ENGINEERING; FUNDAMENTALS OF APPLIED RESERVOIR ENGINEERING; Copyright; CONTENTS; LIST OF FIGURES; FOREWORD; 1 - Introduction; 2 - Basic Rock and Fluid Properties; 2.1 FUNDAMENTALS; 2.2 POROSITY; 2.2.1 Basics; 2.2.2 Measurement of Porosity; 2.2.2.1 Wire Line Logs; 2.2.2.2 Laboratory Measurement of Porosity; 2.2.3 Variable Nature of Porosity; 2.2.4 Net to Gross (NTG); 2.3 PERMEABILITY; 2.3.1 Basics; 2.3.2 Measurement of Permeability; 2.3.2.1 Laboratory Determination of Permeability; 2.3.2.2 Permeability From Well-Test Analysis 327 $a2.3.2.3 Darcy's Law in Field Units2.3.3 Permeability Variation in a Reservoir; 2.3.4 Vertical and Horizontal Permeability; 2.4 WETTABILITY; 2.4.1 Basics; 2.4.1.1 Hysteresis; 2.4.1.2 Imbibition and Drainage; 2.4.2 Measuring Wettability; 2.5 SATURATION AND CAPILLARY PRESSURE; 2.5.1 Saturation; 2.5.2 Capillary Pressure; 2.5.3 Reservoir Saturation With Depth; 2.5.3.1 Oil-Water Reservoirs With a Gas Cap; 2.6 RELATIVE PERMEABILITY; 2.6.1 Basics; 2.6.2 Oil-Water Systems; 2.6.3 Gas-Water Systems; 2.6.4 Gas-Oil Relative Permeability; 2.6.5 Semi-Empirical Equations for Two-Phase Relative Permeabilities 327 $a2.6.6 Three-Phase Relative Permeabilities2.6.7 Measurement of Relative Permeability; 2.6.8 Excel Software for Producing Empirical Relative Permeability and Capillary Pressure Curves; 2.7 RESERVOIR FLUIDS; 2.7.1 Basics; 2.7.1.1 Hydrocarbons; 2.7.1.2 Inerts; 2.7.1.3 Types of Reservoir Fluid; 2.7.2 Relationship Between Gas and Oil Phases-Single-Component Systems; 2.7.3 Phase Equilibria in Multicomponent Systems; 2.7.3.1 A Different Representation-Two-Pseudocomponent Pressure Composition Plots; 2.7.4 Volume Changes With Pressure and Temperature (PVT Relationships) 327 $a2.7.5 Obtaining Representative Reservoir Fluid Samples2.7.5.1 Surface Flow Testing; 2.7.5.2 Direct Reservoir Fluid Sampling-Repeat Formation Testing; 2.7.6 Laboratory Studies on Reservoir Fluids; 2.7.6.1 Constant Volume Depletion for Gas and Gas Condensate Systems; 2.7.6.2 Constant Composition Expansion; 2.7.6.3 Differential Depletion for Oil; 2.7.7 Use of Equations of State in Reservoir Engineering; 2.7.7.1 Real Gases; 2.7.8 Black Oil Model; 2.7.8.1 Formation Volume Factors; 2.7.8.1.1 Oil FVF; 2.7.8.1.2 Gas FVF; 2.7.8.2 Solution GOR 327 $a2.7.9 Excel Software for Producing Empirical Black Oil Curves2.7.10 Compositional Flash Calculations; 2.7.10.1 Chemical Potentials; 2.7.10.2 Fugacities; 2.7.10.3 For a Real Gas; 2.7.10.4 Cubic Equation of State of Form; Solved to Give PVT Relationships; 2.7.10.5 Allowing Composition of Coexisting Phases to Be Determined; 2.8 QUESTIONS AND EXERCISES; 2.9 FURTHER READING; 2.10 SOFTWARE; 3 - Well-Test Analysis; 3.1 INTRODUCTION; 3.2 BASIC EQUATIONS; 3.3 LINE SOURCE-INFINITE RESERVOIR; 3.4 BOUNDED RESERVOIR WITH ``NO FLOW'' BOUNDARY; 3.5 CONSTANT PRESSURE BOUNDARY; 3.6 SKIN EFFECTS 327 $a3.7 WELLBORE STORAGE 606 $aOil reservoir engineering 606 $aGas reservoirs 606 $aPetroleum engineering 615 0$aOil reservoir engineering. 615 0$aGas reservoirs. 615 0$aPetroleum engineering. 676 $a622.3382 700 $aWheaton$b Richard$01606250 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811627303321 996 $aFundamentals of applied reservoir engineering$93931940 997 $aUNINA