LEADER 01207nam--2200409---450 001 990002910070203316 005 20220516123640.0 010 $a88-901701-9-0 035 $a000291007 035 $aUSA01000291007 035 $a(ALEPH)000291007USA01 035 $a000291007 100 $a20070424d2005----km-y0itay50------ba 101 $aita 102 $aIT 105 $aa---||||001yy 200 1 $aCreta$ememorie d?un viaggio nell?interno dell?isola$fLucio Mariani$g[a cura di Enrica Fiandra e Mario Negri] 210 $aBagnasco d?Asti$cCIRAAS$d2005 215 $aVI, 297 p.$cin gran parte ill.$d30 cm 300 $aTitolo della copertina 300 $aIn copertina: IULM, Libera Universitą di Lingue e Comunicazione 410 0$12001 454 1$12001 461 1$1001-------$12001 607 $aCreta$xZone archeologiche 607 $aCreta$xDescrizioni 676 $a930.1 700 1$aMARIANI,$bLucio$0208362 702 1$aFIANDRA,$bEnrica 702 1$aNEGRI,$bMario 801 0$aIT$bsalbc$gISBD 912 $a990002910070203316 951 $aXI.3.B. 391$b191643 L.M.$cXI.3.B.$d00210078 959 $aBK 969 $aUMA 996 $aCreta$9988427 997 $aUNISA LEADER 04658nam 2200745 450 001 9910811500303321 005 20230803031722.0 010 $a3-11-027043-9 024 7 $a10.1515/9783110270433 035 $a(CKB)2670000000432658 035 $a(EBL)1037918 035 $a(OCoLC)858761731 035 $a(SSID)ssj0001002217 035 $a(PQKBManifestationID)11534566 035 $a(PQKBTitleCode)TC0001002217 035 $a(PQKBWorkID)10997810 035 $a(PQKB)10400442 035 $a(MiAaPQ)EBC1037918 035 $a(DE-B1597)173928 035 $a(OCoLC)862247500 035 $a(DE-B1597)9783110270433 035 $a(Au-PeEL)EBL1037918 035 $a(CaPaEBR)ebr10786193 035 $a(CaONFJC)MIL807758 035 $a(EXLCZ)992670000000432658 100 $a20130922h20132013 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNonconservative stability problems of modern physics /$fby Oleg N. Kirillov 210 1$aBerlin ;$aBoston :$cWalter de Gruyter GmbH & Co., KG,$d[2013] 210 4$d©2013 215 $a1 online resource (448 p.) 225 0 $aDe Gruyter Studies in Mathematical Physics ;$v14 300 $aDescription based upon print version of record. 311 0 $a3-11-027034-X 320 $aIncludes bibliographies (pages [387]-422) and indexes. 327 $tFront matter --$tPreface --$tContents --$tChapter 1: Introduction --$tChapter 2: Lyapunov stability and linear stability analysis --$tChapter 3: Hamiltonian and gyroscopic systems --$tChapter 4: Reversible and circulatory systems --$tChapter 5: Influence of structure of forces on stability --$tChapter 6: Dissipation-induced instabilities --$tChapter 7: Nonself-adjoint boundary eigenvalue problems for differential operators and operator matrices dependent on parameters --$tChapter 8: The destabilization paradox in continuous circulatory systems --$tChapter 9: The MHD kinematic mean field ?2-dynamo --$tChapter 10: Campbell diagrams of gyroscopic continua and subcritical friction-induced flutter --$tChapter 11: Non-Hermitian perturbation of Hermitian matrices with physical applications --$tChapter 12: Magnetorotational instability --$tReferences --$tIndex 330 $aThis work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics. It deals with both finite- and infinite-dimensional nonconservative systems and covers the fundamentals of the theory, including such topics as Lyapunov stability and linear stability analysis, Hamiltonian and gyroscopic systems, reversible and circulatory systems, influence of structure of forces on stability, and dissipation-induced instabilities, as well as concrete physical problems, including perturbative techniques for nonself-adjoint boundary eigenvalue problems, theory of the destabilization paradox due to small damping in continuous circulatory systems, Krein-space related perturbation theory for the MHD kinematic mean field ?²-dynamo, analysis of Campbell diagrams and friction-induced flutter in gyroscopic continua, non-Hermitian perturbation of Hermitian matrices with applications to optics, and magnetorotational instability and the Velikhov-Chandrasekhar paradox. The book serves present and prospective specialists providing the current state of knowledge in the actively developing field of nonconservative stability theory. Its understanding is vital for many areas of technology, ranging from such traditional ones as rotor dynamics, aeroelasticity and structural mechanics to modern problems of hydro- and magnetohydrodynamics and celestial mechanics. 410 3$aDe Gruyter Studies in Mathematical Physics 606 $aEigenvalues 606 $aMechanical impedance 606 $aOscillations 606 $aStability$xMathematical models 610 $aMechanics. 610 $aNonconservative Systems. 610 $aNonself-adjoint Operators. 610 $aStability Problems. 615 0$aEigenvalues. 615 0$aMechanical impedance. 615 0$aOscillations. 615 0$aStability$xMathematical models. 676 $a530.4/74 676 $a530.474 686 $aSK 950$2rvk 700 $aKirillov$b Oleg N.$f1972-$0933374 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811500303321 996 $aNonconservative stability problems of modern physics$92600365 997 $aUNINA