LEADER 11793nam 2200613 450 001 9910810928003321 005 20220822214432.0 010 $a1-118-92147-X 010 $a1-118-92146-1 010 $a1-118-92148-8 035 $a(CKB)4330000000007492 035 $a(MiAaPQ)EBC6187643 035 $a(Au-PeEL)EBL6187643 035 $a(OCoLC)1149299924 035 $a(EXLCZ)994330000000007492 100 $a20200808d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBiorefinery of inorganics $erecovering mineral nutrients from biomass and organic waste /$fedited by Erik Meers [et al.] 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2020] 210 4$d©2020 215 $a1 online resource (xxviii, 440 pages) $cdiagrams 225 1 $aWiley series in renewable resources 300 $aIncludes bibliographical references and index. 311 1 $a1-118-92145-3 327 $aCover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Part I Global Nutrient Flows and Cycling in Food Systems -- Chapter 1 Global Nutrient Flows and Cycling in Food Systems -- 1.1 Introduction -- 1.2 Primary and Secondary Driving Forces of Nutrient Cycling -- 1.3 Anthropogenic Influences on Nutrient Cycling -- 1.4 The Global Nitrogen Cycle -- 1.5 The Global Phosphorus Cycle -- 1.6 Changes in Fertilizer Use During the Last 50?Years -- 1.7 Changes in Harvested Crop Products and in Crop Residues During the Last 50?Years -- 1.8 Changes in the Amounts of N and P in Animal Products and Manures -- 1.9 Changes in the Trade of Food and Feed -- 1.10 Changes in Nutrient Balances -- 1.11 General Discussion -- 1.11 References -- Part II The Role of Policy Frameworks in the Transition Toward Nutrient Recycling -- Chapter 2.1 Toward a Framework that Stimulates Mineral Recovery in Europe -- 2.1.1 The Importance of Managing Organic Residues -- 2.1.2 The Rise of Nutrient and Carbon Recycling -- 2.1.3 The European Framework for Nutrient Recovery and Reuse (NRR) -- 2.1.4 EU Waste Legislation -- 2.1.5 Moving from Waste to Product Legislation and the Interplay with Other EU Legislation -- 2.1.6 Complying with Existing Environmental and Health & -- Safety Legislation -- 2.1.7 Conclusion -- 2.1.7 References -- Chapter 2.2 Livestock Nutrient Management Policy Framework in the United States -- 2.2.1 Introduction -- 2.2.2 The Legal?Regulatory Framework for Manure Nutrient Management -- 2.2.3 Current Manure?Management Practices -- 2.2.4 Public Investments for Improvement of Manure?Management Practices -- 2.2.5 The Role of the Judicial Process and Consumer?Driven Preferences -- 2.2.6 Limitations of the Current Framework -- 2.2.7 Conclusion -- 2.2.7 References. 327 $aChapter 2.3 Biomass Nutrient Management in China: The Impact of Rapid Growth and Energy Demand -- 2.3.1 Introduction -- 2.3.2 The Impact of Economic Liberalization Policy in the 1980s and 1990s -- 2.3.3 Environmental Protection Efforts and Unintended Consequences -- 2.3.4 Renewable Energy Policy and Its Impact on Biomass Management -- 2.3.5 Conclusion -- 2.3.5 References -- Chapter 2.4 Nutrient Cycling in Agriculture in China -- 2.4.1 Introduction -- 2.4.2 Nutrient Cycling in China -- 2.4.3 Effects on the Environment -- 2.4.4 Nutrient Management Policies -- 2.4.5 Future Perspectives -- 2.4.5.1 National Nutrient Management Strategy -- 2.4.5.2 Challenges of Technology Transfer in Manure Management -- 2.4.5.3 Environmental Protection -- 2.4.6 Conclusion -- 2.4.6 References -- Part III State of the Art and Emerging Technologies in Nutrient Recovery from Organic Residues -- Chapter 3.1 Manure as a Resource for Energy and Nutrients -- 3.1.1 Introduction -- 3.1.2 Energy Production from Animal Manure -- 3.1.2.1 Anaerobic Digestion -- 3.1.2.2 Thermochemical Conversion Process -- 3.1.3 Nutrient Recovery Techniques -- 3.1.3.1 Phosphorus Precipitation -- 3.1.3.2 Ammonia Stripping and Scrubbing -- 3.1.3.3 Membrane Filtration -- 3.1.3.4 Phosphorus Extraction from Ashes -- 3.1.4 Conclusion -- 3.1.4 References -- Chapter 3.2 Municipal Wastewater as a Source for Phosphorus -- 3.2.1 Introduction -- 3.2.2 Phosphorus Removal from Wastewater -- 3.2.3 Sludge Management -- 3.2.4 Current State of P Recovery Technologies -- 3.2.4.1 Phosphorus Salts Precipitation -- 3.2.4.2 Phosphorus Recovery Via Wet?Chemical Processes -- 3.2.4.3 Phosphorus Recovery Via Thermal Processes -- 3.2.4.4 Choice of Phosphorus Technologies Today -- 3.2.5 Future P Recovery Technologies -- 3.2.5.1 Phosphorus Salt Recovery Upgrades -- 3.2.5.2 Thermal Processes. 327 $a3.2.5.3 Natural Process for the Recovery of Phosphorus -- 3.2.6 Conclusion -- 3.2.6 References -- Chapter 3.3 Ammonia Stripping and Scrubbing for Mineral Nitrogen Recovery -- 3.3.1 Introduction -- 3.3.2 Ammonia Stripping and Scrubbing from Biobased Resources -- 3.3.2.1 Acid Scrubbing of Exhaust Air -- 3.3.2.2 Stripping and Scrubbing from Manure -- 3.3.2.3 Stripping and Scrubbing from Anaerobic Digestate -- 3.3.2.4 Manure and Digestate Processing by Evaporation -- 3.3.3 Alternative Scrubbing Agents -- 3.3.3.1 Organic Acids -- 3.3.3.2 Nitric Acid -- 3.3.3.3 Gypsum -- 3.3.4 Industrial Cases of Stripping and Scrubbing -- 3.3.4.1 Waste Air Cleaning Via Acid Scrubbing -- 3.3.4.2 Raw Digestate Processing Via Stripping and Scrubbing and Recirculation of the N?Depleted Digestate -- 3.3.4.3 Liquid Fraction Digestate Processing Via Stripping and Scrubbing -- 3.3.4.4 Liquid Fraction of Digestate Processing Via Membrane Separation and Stripping and Scrubbing -- 3.3.5 Product Quality of Ammonium Sulfate and Ammonium Nitrate -- 3.3.5.1 Ammonium Sulfate -- 3.3.5.2 Ammonium Nitrate -- 3.3.6 Conclusion -- 3.3.6 References -- Part IV Inspiring Cases in Nutrient Recovery Processes -- Chapter 4.1 Struvite Recovery from Domestic Wastewater -- 4.1.1 Introduction -- 4.1.2 Process Description -- 4.1.3 Analyses and Tests -- 4.1.3.1 Mass Balance -- 4.1.3.2 Struvite Purity -- 4.1.4 Operational Benefits -- 4.1.4.1 Enhanced Dewaterability -- 4.1.4.2 Enhanced Recovery Potential -- 4.1.4.3 Reduced Scaling -- 4.1.4.4 Reduced Phosphorus Content in the Sludge Pellets -- 4.1.4.5 Reduced P and N Load in the Rejection Water -- 4.1.5 Economic Evaluation -- 4.1.6 Future Challenges -- 4.1.6.1 In?Depth Quality Screening -- 4.1.6.2 Improved Crystal Separation -- 4.1.7 Conclusion -- 4.1.7 References -- Chapter 4.2 Mineral Concentrates from Membrane Filtration -- 4.2.1 Introduction. 327 $a4.2.2 Production of Mineral Concentrates -- 4.2.2.1 General Set?up -- 4.2.2.2 Solid/Liquid Separation -- 4.2.2.3 Pre?treatment of the Liquid Fraction (Effluent from Mechanical Separation) -- 4.2.2.4 Reverse Osmosis -- 4.2.3 Mass Balance -- 4.2.4 Composition of Raw Slurry, Solid Fraction, and RO?Concentrate -- 4.2.4.1 Raw Slurry -- 4.2.4.2 Solid Fraction -- 4.2.4.3 RO?Concentrate -- 4.2.5 Quality Requirements -- 4.2.6 Conclusion -- 4.2.6 References -- Chapter 4.3 Pyrolysis of Agro?Digestate: Nutrient Distribution -- 4.3.1 Introduction -- 4.3.1.1 Background -- 4.3.1.2 The Pyrolysis Process -- 4.3.1.3 Pyrolysis of Agro?Digestate -- 4.3.2 Investigation -- 4.3.2.1 Materials and Methods -- 4.3.2.2 Product Analysis and Evaluation -- 4.3.3 Results and Discussion -- 4.3.3.1 Fast Pyrolysis: Influence of Temperature -- 4.3.3.2 Influence of Heating Rate -- 4.3.4 Conclusion -- 4.3.4 Acknowledgment -- 4.3.4 References -- Chapter 4.4 Agronomic Effectivity of Hydrated Poultry Litter Ash -- 4.4.1 Introduction -- 4.4.2 Energy Production Process -- 4.4.3 Composition of HPLA -- 4.4.4 Agronomic Effectivity of HPLA -- 4.4.5 Phosphorus -- 4.4.6 Potassium -- 4.4.7 Rye Grass -- 4.4.8 Acid?Neutralizing Value -- 4.4.9 Efficacy -- 4.4.10 Conclusion -- 4.4.10 References -- Chapter 4.5 Bioregenerative Nutrient Recovery from Human Urine: Closing the Loop in Turning Waste into Wealth -- 4.5.1 Introduction -- 4.5.2 Composition and Fertilizer Potential -- 4.5.3 State of the Art of Regenerative Practices -- 4.5.3.1 HU in Agriculture -- 4.5.3.2 HU in Aquaculture -- 4.5.4 Cautions, Concerns, and Constraints -- 4.5.5 Conclusion -- 4.5.5 References -- Chapter 4.6 Pilot?Scale Investigations on Phosphorus Recovery from Municipal Wastewater -- 4.6.1 Introduction -- 4.6.2 European and National Incentives to Act on Market Drivers -- 4.6.3 Pilot Investigations. 327 $a4.6.3.1 Acid Leaching Solutions to Recover Phosphorus from Sewage Sludge Ashes -- 4.6.3.2 Pilot Demonstration of Thermal Solutions to Recover Phosphorus from Sewage Sludge: The EuPhoRe® Process -- 4.6.3.3 Demonstration of struvite solution with biological acidification to increase the P recovery from sewage sludge -- 4.6.3.4 Innovative Technical Solutions to Recover P from Small?Scale WWTPs: Downscaling Struvite Precipitation for Rural Areas -- 4.6.3.5 Algal?Based Solutions to Recover Phosphorus from Small?Scale WWTPs: A Promising Approach for Remote, Rural, and Island Areas -- 4.6.3 References -- Part V Agricultural and Environmental Performance of Biobased Fertilizer Substitutes: Overview of Field Assessments -- Chapter 5.1 Fertilizer Replacement Value: Linking Organic Residues to Mineral Fertilizers -- 5.1.1 Introduction -- 5.1.2 Nutrient Pathways from Land Application to Crop Uptake -- 5.1.2.1 Nitrogen -- 5.1.2.2 Phosphorus -- 5.1.3 Fertilizer Replacement Value -- 5.1.3.1 Crop Response -- 5.1.3.2 Response Period -- 5.1.4 Reference Mineral Fertilizer -- 5.1.4.1 Crop and Soil Type -- 5.1.4.2 Application Time and Method -- 5.1.4.3 Assessment Method -- 5.1.5 Fertilizer Replacement Values in Fertilizer Plans -- 5.1.6 Conclusion -- 5.1.6 References -- Chapter 5.2 Anaerobic Digestion and Renewable Fertilizers: Case Studies in Northern Italy -- 5.2.1 Introduction -- 5.2.2 Anaerobic Digestion as a Tool to Correctly Manage Animal Slurries -- 5.2.3 Chemical and Physical Modification of Organic Matter and Nutrients during Anaerobic Digestion -- 5.2.4 From Digestate to Renewable Fertilizers -- 5.2.4.1 N?Fertilizer from the LF of Digestate -- 5.2.4.2 Organic Fertilizer from the SF of Digestate -- 5.2.5 Environmental Safety and Health Protection Using Digestate -- 5.2.6 Conclusion -- 5.2.6 References. 327 $aChapter 5.3 Nutrients and Plant Hormones in Anaerobic Digestates: Characterization and Land Application. 330 $a"As part of the move towards a bio-based economy, it is important to recycle the valuable nutrients that currently end up in waste streams. Nutrient resources are depleting and significant amounts of fossil energy are required for the production of synthetic fertilizers, but waste streams including agricultural waste, wastewater/sewage and municipal waste are significant sources of nutrients. The production of biogas through anaerobic digestion also produces nutrient-rich digestates, which have the potential for use as green fertilizers in agriculture"--$cProvided by publisher. 410 0$aWiley series in renewable resources. 606 $aSewage$xPurification$xNutrient removal 606 $aFactory and trade waste$xPurification 606 $aNutrient pollution of water 615 0$aSewage$xPurification$xNutrient removal. 615 0$aFactory and trade waste$xPurification. 615 0$aNutrient pollution of water. 676 $a631.869 702 $aMeers$b Erik$f1976-, 702 $aVelthof$b G. L$g(Gerardus Lambertus),$f1964-, 702 $aMichels$b Evi$f1980-, 702 $aRietra$b Rene$f1967-, 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910810928003321 996 $aBiorefinery of inorganics$94009590 997 $aUNINA