LEADER 04979nam 2200685Ia 450
001 9910810893403321
005 20200520144314.0
010 $a1-281-94825-X
010 $a9786611948252
010 $a981-279-855-2
035 $a(CKB)1000000000538121
035 $a(EBL)1679746
035 $a(OCoLC)879074291
035 $a(SSID)ssj0000201998
035 $a(PQKBManifestationID)11179684
035 $a(PQKBTitleCode)TC0000201998
035 $a(PQKBWorkID)10253069
035 $a(PQKB)11750250
035 $a(MiAaPQ)EBC1679746
035 $a(WSP)00004221
035 $a(Au-PeEL)EBL1679746
035 $a(CaPaEBR)ebr10255836
035 $a(EXLCZ)991000000000538121
100 $a20020111d2001 uy 0
101 0 $aeng
135 $aur|n|---|||||
181 $ctxt
182 $cc
183 $acr
200 00$aMethods of qualitative theory in nonlinear dynamics$hPart II /$fLeonid P. Shilnikov ... [et al.]
205 $a1st ed.
210 $aSingapore ;$aRiver Edge, NJ $cWorld Scientific$d2001
215 $a1 online resource (591 p.)
225 0 $aWorld scientific series on nonlinear science. Series A, Monographs and treatises ;$v5
300 $aDescription based upon print version of record.
311 $a981-02-4072-4
320 $aIncludes bibliographical references and indexes.
327 $aContents ; Introduction to Part II ; Chapter 7. STRUCTURALLY STABLE SYSTEMS ; 7.1. Rough systems on a plane. Andronov-Pontryagin theorem ; 7.2. The set of center motions ; 7.3. General classification of center motions ; 7.4. Remarks on roughness of high-order dynamical systems
327 $a7.5. Morse-Smale systems 7.6. Some properties of Morse-Smale systems ; Chapter 8. BIFURCATIONS OF DYNAMICAL SYSTEMS ; 8.1. Systems of first degree of non-roughness ; 8.2. Remarks on bifurcations of multi-dimensional systems
327 $a8.3. Structurally unstable homoclinic and heteroclinic orbits. Moduli of topological equivalence 8.4. Bifurcations in finite-parameter families of systems. Andronov's setup ; Chapter 9. THE BEHAVIOR OF DYNAMICAL SYSTEMS ON STABILITY BOUNDARIES OF EQUILIBRIUM STATES
327 $a9.1. The reduction theorems. The Lyapunov functions 9.2. The first critical case ; 9.3. The second critical case ; Chapter 10. THE BEHAVIOR OF DYNAMICAL SYSTEMS ON STABILITY BOUNDARIES OF PERIODIC TRAJECTORIES ; 10.1. The reduction of the Poincare map. Lyapunov functions
327 $a10.2. The first critical case 10.3. The second critical case ; 10.4. The third critical case. Weak resonances ; 10.5. Strong resonances ; 10.6. Passage through strong resonance on stability boundary ; 10.7. Additional remarks on resonances
327 $aChapter 11. LOCAL BIFURCATIONS ON THE ROUTE OVER STABILITY BOUNDARIES
330 $a Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need. Following the footsteps of Poincare?, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical
410 0$aWorld Scientific Series on Nonlinear Science Series A
606 $aNonlinear theories
606 $aNonlinear mechanics
615 0$aNonlinear theories.
615 0$aNonlinear mechanics.
676 $a514.74
676 $a514/.74
676 $a620.10401515355
701 $aShilnikov$b L. P$054739
801 0$bMiAaPQ
801 1$bMiAaPQ
801 2$bMiAaPQ
906 $aBOOK
912 $a9910810893403321
996 $aMethods of qualitative theory in nonlinear dynamics$94075179
997 $aUNINA