LEADER 05475nam 2200649 a 450 001 9910810695803321 005 20230607221454.0 010 $a981-277-707-5 035 $a(CKB)1000000000404123 035 $a(EBL)1679517 035 $a(OCoLC)879023697 035 $a(SSID)ssj0000182746 035 $a(PQKBManifestationID)11196814 035 $a(PQKBTitleCode)TC0000182746 035 $a(PQKBWorkID)10171879 035 $a(PQKB)10180301 035 $a(MiAaPQ)EBC1679517 035 $a(WSP)00005023 035 $a(Au-PeEL)EBL1679517 035 $a(CaPaEBR)ebr10201164 035 $a(CaONFJC)MIL505395 035 $a(EXLCZ)991000000000404123 100 $a20021125d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aIntroduction to modern methods of quantum many-body theory and their applications$b[electronic resource] /$feditors, Adelchi Fabrocini, Stefano Fantoni, Eckhard Krotscheck 210 $aRiver Edge, NJ $cWorld Scientific$dc2002 215 $a1 online resource (428 p.) 225 1 $aSeries on advances in quantum many-body theory ;$vv. 7 300 $aLecture notes of the second European Summer School on Microscopic Quantum Many-Body Theories and their Applications, held in Miramare, Trieste, Italy, on September 3-14, 2001. 311 $a981-238-069-8 320 $aIncludes bibliographical references and indexes. 327 $aCONTENTS ; PREFACE ; Chapter 1 DENSITY FUNCTIONAL THEORY ; 1. Introduction ; 1.1. Units and notation ; 1.2. Hartree-Fock theory ; 1.3. Homogeneous electron gas ; 1.3.1. Free electrons ; 1.3.2. Exchange energy ; 2. What is density functional theory? ; 2.1. Hohenberg-Kohn theorem 327 $a2.2. A simple example: the Thomas-Fermi theory 2.2.1. Variational equation of Thomas-Fermi theory ; 2.2.2. Thomas-Fermi atom ; 2.2.3. An example ; 3. Kohn-Sham theory ; 3.1. Local density approximation ; 3.2. Spin and the local spin density approximation 327 $a3.3. The generalized gradient approximation 4. Numerical methods for the Kohn-Sham equation ; 4.0.1. Exact exchange ; 4.0.2. 0(N) methods ; 5. Some applications and limitations of DFT ; 5.1. Two examples of condensed matter ; 5.2. Vibrations ; 5.3. NMR chemical shifts 327 $a6. Limitations of DFT 7. Time-dependent density functional theory: the equations ; 7.1. Optical properties ; 7.1.1. f-sum rule ; 7.2. Methods to solve the TDDFT equations ; 7.2.1. Linear response formula ; 7.3. Dynamic polarizability ; 7.4. Dielectric function 327 $a8. TDDFT: numerical aspects 8.1. Configuration matrix method ; 8.2. Linear response method ; 8.3. Sternheimer method ; 8.4. Real time method ; 9. Applications of TDDFT ; 9.1. Simple metal clusters ; 9.2. Carbon structures ; 9.3. Diamond ; 9.4. Other applications 327 $a9.5. Limitations 330 $a This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking 410 0$aSeries on advances in quantum many-body theory ;$vv. 7. 606 $aMany-body problem$vCongresses 615 0$aMany-body problem 676 $a530.14/4 701 $aFabrocini$b A$053597 701 $aFantoni$b S$g(Stefano)$01473633 701 $aKrotscheck$b Eckhard$01668942 712 12$aEuropean Summer School on Microscopic Many-Body Theories and their Applications$d(2nd :$f2001 :$eMiramare, Italy) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910810695803321 996 $aIntroduction to modern methods of quantum many-body theory and their applications$94098879 997 $aUNINA