LEADER 04971oam 2200529 450 001 9910810384503321 005 20170523091545.0 010 $a0-08-098290-5 035 $a(OCoLC)880744590 035 $a(MiFhGG)GVRL8DGF 035 $a(EXLCZ)992550000001138918 100 $a20140530d2014 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aShip hydrostatics and stability /$fAdrian Biran, Ruben Lopez Pulido ; with contributions by Javier de Juana Gamo 205 $aSecond edition. 210 1$aOxford :$cButterworth-Heinemann,$d2014. 215 $a1 online resource (xxii, 392 pages) $cillustrations (some color) 225 0 $aGale eBooks 300 $aPrevious edition: 2003. 311 $a0-08-098287-5 311 $a1-306-07337-5 320 $aIncludes bibliographical references and indexes. 327 $aHalf Title; Title Page; Copyright; Dedication; Contents; Biography; Preface to the Second Edition; Preface to the First Reprint; Preface; 1 Definitions, Principal Dimensions; 1.1 Introduction; 1.2 Marine Terminology; 1.3 The Principal Dimensions of a Ship; 1.4 The Definition of the Hull Surface; 1.4.1 Coordinate Systems; 1.4.2 Graphic Description; 1.4.3 Fairing; 1.4.4 Table of Offsets; 1.5 Coefficients of Form; 1.6 Summary; 1.7 Examples; 1.8 Exercises; 2 Basic Ship Hydrostatics; 2.1 Introduction; 2.2 Archimedes' Principle; 2.2.1 A Body with Simple Geometrical Form; 2.2.2 The General Case 327 $a2.3 The Conditions of Equilibrium of a Floating Body2.3.1 Forces; 2.3.2 Moments; 2.4 A Definition of Stability; 2.5 Initial Stability; 2.6 Metacentric Height; 2.7 A Lemma on Moving Volumes or Masses; 2.8 Small Angles of Inclination; 2.8.1 A Theorem on the Axis of Inclination; 2.8.2 Metacentric Radius; 2.9 The Curve of Centres of Buoyancy; 2.10 The Metacentric Evolute; 2.11 Metacentres for Various Axes of Inclination; 2.12 Summary; 2.13 Examples; 2.14 Exercises; 3 Numerical Integration in Naval Architecture; 3.1 Introduction; 3.2 The Trapezoidal Rule 327 $a3.2.1 Error of Integration by the Trapezoidal Rule3.3 Simpson's Rule; 3.3.1 Error of Integration by Simpson's Rule; 3.4 Calculating Points on the Integral Curve; 3.5 Intermediate Ordinates; 3.6 Reduced Ordinates; 3.7 Other Procedures of Numerical Integration; 3.8 Summary; 3.9 Examples; 3.10 Exercises; 4 Hydrostatic Curves; 4.1 Introduction; 4.2 The Calculation of Hydrostatic Data; 4.2.1 Waterline Properties; 4.2.2 Volume Properties; 4.2.3 Derived Data; 4.2.4 Wetted Surface Area; 4.3 Hydrostatic Curves; 4.4 Bonjean Curves and their Use; 4.5 Some Properties of Hydrostatic Curves 327 $a4.6 Hydrostatic Properties of Affine Hulls4.7 Summary; 4.8 Examples; 4.9 Exercises; 5 Statical Stability at Large Angles of Heel; 5.1 Introduction; 5.2 The Righting Arm; 5.3 The Curve of Statical Stability; 5.4 The Influence of Trim and Waves; 5.5 Summary; 5.6 Example; 5.7 Exercises; 6 Simple Models of Stability; 6.1 Introduction; 6.2 Angles of Statical Equilibrium; 6.3 The Wind Heeling Arm; 6.4 Heeling Arm in Turning; 6.5 Other Heeling Arms; 6.6 Dynamical Stability; 6.7 Stability Conditions-A More Rigorous Derivation; 6.8 Roll Period; 6.9 Loads that Adversely Affect Stability 327 $a6.9.1 Loads Displaced Transversely6.9.2 Hanging Loads; 6.9.3 Free Surfaces of Liquids; 6.9.4 Shifting Loads; 6.9.5 Moving Loads as a Case of Positive Feedback; 6.10 The Stability of Grounded or Docked Ships; 6.10.1 Grounding on the Whole Length of the Keel; 6.10.2 Grounding on One Point of the Keel; 6.11 Negative Metacentric Height; 6.12 Wall-Sided Floating Bodies with Negative Metacentric Height; 6.13 The Limitations of Simple Models; 6.14 Other Modes of Capsizing; 6.15 Summary; 6.16 Examples; 6.17 Exercises; 7 Weight and Trim Calculations; 7.1 Introduction; 7.2 Weight Calculations 327 $a7.2.1 Weight Groups 330 $a Ship Hydrostatics and Stability is a complete guide to understanding ship hydrostatics in ship design and ship performance, taking you from first principles through basic and applied theory to contemporary mathematical techniques for hydrostatic modeling and analysis. Real life examples of the practical application of hydrostatics are used to explain the theory and calculations using MATLAB and Excel. The new edition of this established resource takes in recent developments in naval architecture, such as parametric roll, the effects of non-linear motions on stability and the influenc 606 $aShips$xHydrodynamics 606 $aStability of ships 615 0$aShips$xHydrodynamics. 615 0$aStability of ships. 676 $a623.81 700 $aBiran$b Adrian$027477 702 $aLopez-Pulido$b Ruben 702 $aGamo$b Javier de Juana 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910810384503321 996 $aShip hydrostatics and stability$91212911 997 $aUNINA