LEADER 00881nam0-22003251i-450- 001 990000831920403321 005 20001010 010 $a0-521-28149-0 035 $a000083192 035 $aFED01000083192 035 $a(Aleph)000083192FED01 035 $a000083192 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aIntroduction to Dynamics$fIan Percival, Derek Richards 210 $aCambridge$cCambridge University Press$d1982 215 $aVIII, 228 p.$d22 cm 610 0 $aIntroduction to Dynamics 676 $a531 700 1$aPercival,$bIan$040684 702 1$aRichards,$bDerek 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000831920403321 952 $a02 65 B 14$b3838$fFINBN 959 $aFINBN 996 $aIntroduction to Dynamics$9338370 997 $aUNINA DB $aING01 LEADER 00763nam0-22002651i-450- 001 990001276960403321 035 $a000127696 035 $aFED01000127696 035 $a(Aleph)000127696FED01 035 $a000127696 100 $a20000920d1982----km-y0itay50------ba 101 1$aeng 200 1 $aGeometric theory of dynamical systems$ean introduction$fby Palis Jacob Jr.$gDe Melo Welington 205 $a$a 210 $aNew York [etc.]$cSpringer-Verlag$d1982 700 1$aPalis,$bJacob$044457 702 1$aDe Melo,$bWelington 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001276960403321 952 $a31-C-22$b838$fMA1 959 $aMA1 996 $aGeometric Theory of Dynamical Systems$9338465 997 $aUNINA DB $aING01 LEADER 05308nam 2200649 450 001 9910810322803321 005 20200520144314.0 010 $a1-119-05858-9 010 $a1-119-05807-4 010 $a1-119-05798-1 035 $a(CKB)3710000000315823 035 $a(EBL)1890998 035 $a(SSID)ssj0001432365 035 $a(PQKBManifestationID)11852772 035 $a(PQKBTitleCode)TC0001432365 035 $a(PQKBWorkID)11388889 035 $a(PQKB)11095169 035 $a(MiAaPQ)EBC1890998 035 $a(Au-PeEL)EBL1890998 035 $a(CaPaEBR)ebr10997825 035 $a(OCoLC)898213751 035 $a(EXLCZ)993710000000315823 100 $a20150106h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDiscrete mechanics /$fJean-Paul Caltagirone 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2015. 210 4$dİ2015 215 $a1 online resource (253 p.) 225 1 $aFluid Mechanics Series 300 $aDescription based upon print version of record. 311 $a1-84821-678-5 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; Preface; List of Symbols; Introduction; I.1. General points; I.2. Introduction; 1: Framework of Discrete Mechanics; 1.1. Frames of reference and uniform motions; 1.2. Concept of a Discrete Medium; 1.2.1. Vectors and components; 1.2.2. Physical meaning of the differential operators; 1.2.3. Use of the theorems of differential geometry; 1.2.4. Two essential properties; 1.2.5. Tensorial values; 1.2.6. The scalar and vectorial potentials; 1.3. The physical characteristics; 1.4. Equilibrium stress state; 1.4.1. Two examples of mechanical equilibrium 327 $a1.5. Thermodynamic non-equilibrium1.5.1. Forces and fluxes; 1.6. Conservation of mass; 2: Momentum Conservation; 2.1. Classification of forces; 2.2. Three fundamental experiments; 2.2.1. Equilibrium in a glass of water; 2.2.2. Couette flow; 2.2.3. Poiseuille flow; 2.3. Postulates; 2.4. Modeling of the pressure forces; 2.5. Modeling of the viscous forces; 2.5.1. Modeling of the viscous effects of volume; 2.5.2. Modeling of the viscous surface effects; 2.5.3. Stress state; 2.6. Objectivity; 2.7. Discrete motion balance equation; 2.7.1. Fundamental law of dynamics; 2.7.2. Eulerian step 327 $a2.7.3. Mechanical equilibrium2.8. Formulation in terms of density and temperature; 2.9. Similitude parameters; 2.9.1. Impact on the surface of a liquid; 2.10. Hypercompressible media; 3: Conservation of Heat Flux and Energy; 3.1. Introduction; 3.2. Conservation of flux; 3.3. Conservation of energy; 3.3.1. Conservation of total energy; 3.3.2. Conservation of kinetic energy; 3.3.3. Conservation of the internal energy; 3.4. Discrete equations for the flux and the energy; 3.5. A simple heat-conduction problem; 3.5.1. Case of anisotropic materials; 4: Properties of Discrete Equations 327 $a4.1. A system of equations and potentials4.2. Physics represented; 4.2.1. Poiseuille flow and potentials; 4.2.2. Celerity and maximum velocity; 4.2.3. Remarks about turbulence; 4.3. Boundary conditions; 4.3.1. Contact surface; 4.3.2. Shockwaves; 4.3.3. Edge conditions; 4.3.4. Slip condition; 4.3.5. Capillary effects; 4.3.6. Thermal boundary conditions; 4.4. Penalization of the potentials; 4.5. Continua and discrete mediums; 4.5.1. Differences with the Navier-Stokes equation; 4.5.2. Dissipation; 4.5.3. Case of rigidifying motions; 4.5.4. An example of the dissipation of energy 327 $a4.6. Hodge-Helmholtz decomposition4.7. Approximations; 4.7.1. Bernoulli's law; 4.7.2. Irrotational flow; 4.7.3. Inviscid fluid; 4.7.4. Incompressible flow; 4.8. Gravitational waves; 4.9. Linear visco-elasticity; 4.9.1. Viscous dissipation in a visco-elastic medium; 4.9.2. Dissipation of longitudinal waves in a visco-elastic medium; 4.9.3. Consistency with Continuum Mechanics; 4.9.4. Pure compression; 4.9.5. Pure shear stress; 4.9.6. Bingham fluid; 5: Multiphysics; 5.1. Extensions to other branches of physics; 5.1.1. Coupling between a fluid and a porous medium 327 $a5.2. Flow around a cylinder in an infinite medium 330 $aThis book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H 410 0$aFluid mechanics series. 606 $aMechanics, Analytic 606 $aNonlinear mechanics 615 0$aMechanics, Analytic. 615 0$aNonlinear mechanics. 676 $a531.01515 700 $aCaltagirone$b Jean-Paul$0895423 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910810322803321 996 $aDiscrete mechanics$94035975 997 $aUNINA