LEADER 04948nam 2200637 a 450
001 9910810237003321
005 20200520144314.0
010 $a1-281-92469-5
010 $a9786611924690
010 $a981-277-335-5
035 $a(CKB)1000000000402774
035 $a(EBL)1681239
035 $a(OCoLC)879025049
035 $a(SSID)ssj0000265242
035 $a(PQKBManifestationID)11218023
035 $a(PQKBTitleCode)TC0000265242
035 $a(PQKBWorkID)10294111
035 $a(PQKB)10999397
035 $a(MiAaPQ)EBC1681239
035 $a(WSP)00006136
035 $a(Au-PeEL)EBL1681239
035 $a(CaPaEBR)ebr10201465
035 $a(CaONFJC)MIL192469
035 $a(EXLCZ)991000000000402774
100 $a20060720d2006 uy 0
101 0 $aeng
135 $aur|n|---|||||
181 $ctxt
182 $cc
183 $acr
200 14$aThe universal mandelbrot set $ebeginning of the story /$fV. Dolotin, A. Morozov
205 $a1st ed.
210 $aHackensack, NJ $cWorld Scientiific Pub.$dc2006
215 $a1 online resource (176 p.)
300 $aDescription based upon print version of record.
311 $a981-256-837-9
320 $aIncludes bibliographical references (p. 161-162).
327 $aContents ; Preface ; 1. Introduction ; 2. Notions and notation ; 2.1 Objects associated with the space X ; 2.2 Objects associated with the space M ; 2.3 Combinatorial objects ; 2.4 Relations between the notions ; 3. Summary ; 3.1 Orbits and grand orbits ; 3.2 Mandelbrot sets
327 $a3.2.1 Forest structure 3.2.2 Relation to resultants and discriminants ; 3.2.3 Relation to stability domains ; 3.2.4 Critical points and locations of elementary domains ; 3.2.5 Perturbation theory and approximate self-similarity of Mandelbrot set ; 3.2.6 Trails in the forest
327 $a3.3 Sheaf of Julia sets over moduli space 4. Fragments of theory ; 4.1 Orbits and reduction theory of iterated maps ; 4.2 Bifurcations and discriminants: from real to complex ; 4.3 Discriminants and resultants for iterated maps ; 4.4 Period-doubling and beyond
327 $a4.5 Stability and Mandelbrot set 4.6 Towards the theory of Julia sets ; 4.6.1 Grand orbits and algebraic Julia sets ; 4.6.2 From algebraic to ordinary Julia set ; 4.6.3 Bifurcations of Julia set ; 4.7 On discriminant analysis for grand orbits
327 $a4.7.2 Irreducible constituents of discriminants and resultants 4.7.6 Summary ; 4.7.7 On interpretation of wntk ; 4.8 Combinatorics of discriminants and resultants ; 4.9 Shapes of Julia and Mandelbrot sets ; 4.9.1 Generalities
327 $a4.9.2 Exact statements about 1-parametric families of polynomials of power-d
330 $a This book is devoted to the structure of the Mandelbrot set - a remarkable and important feature of modern theoretical physics, related to chaos and fractals and simultaneously to analytical functions, Riemann surfaces, phase transitions and string theory. The Mandelbrot set is one of the bridges connecting the world of chaos and order. The authors restrict consideration to discrete dynamics of a single variable. This restriction preserves the most essential properties of the subject, but drastically simplifies computer simulations and the mathematical formalism. The coverage
606 $aMandelbrot sets
615 0$aMandelbrot sets.
676 $a514/.742
700 $aDolotin$b V$g(Valerii Valerevich)$01721103
701 $aMorozov$b A. D$g(Albert Dmitrievich),$f1944-$028597
801 0$bMiAaPQ
801 1$bMiAaPQ
801 2$bMiAaPQ
906 $aBOOK
912 $a9910810237003321
996 $aThe universal mandelbrot set$94120324
997 $aUNINA